Citation: LI Linlin, DUAN Zunbin, ZHU Lijun, XIANG Yuzhi, XIA Daohong. Progress in Study and Application of Supramolecular System Based on β-Cyclodextrin[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 123-138. doi: 10.11944/j.issn.1000-0518.2017.02.160282 shu

Progress in Study and Application of Supramolecular System Based on β-Cyclodextrin

  • Corresponding author: XIA Daohong, xiadh@upc.edu.cn
  • Received Date: 11 July 2016
    Revised Date: 31 August 2016
    Accepted Date: 30 September 2016

    Fund Project: the National Natural Science Foundation of China 21376265

Figures(18)

  • β-Cyclodextrin (β-CD) is a class of cyclic oligosaccharide which consists of seven D-galactose units linked by α-1, 4-glycosidic bonds. β-CD has a rigid and cone-like molecular structure with hydrophilic outer surface and hydrophobic inner cavity. Recently, unprecedented progress about the preparation and application of supramolecular system based on β-CD has been made. In this paper, the synthesis of derivatives, oligomers and polymers of β-CD, molecular assemblies based on β-CD, and their latest application of supramolecular system that uses β-CD and its modifier as host in drug delivery, gene transfer, catalytic reaction, pollution control and so on, are reviewed. Until now, studies on basic properties of β-CD are becoming mature, but there are still some realistic problems remaining to be solved. With further studies, wider and deeper applications of β-CD may be finally achieved in various fields.
  • 加载中
    1. [1]

      Steed J W, Atwood J L. Supramolecular Chemistry[M]. ZHAO Yaopeng, SUN Zhen, Trans. Beijing:Chemical Industry Press, 2006:1-2(in Chinese).

    2. [2]

      Lehn J M. Supramolecular Chemistry:Concepts and Perspectives[M]. Weinheim:VCH, 1995.

    3. [3]

      Wang Z Z, Fu X Y, Dai G D. Efficient and Improved Syntheses of Two Key Intermediates for Functionalization of β-Cyclodextrin at the Secondary Hydroxyl Face[J]. Monatsh Chem, 2011,142(3):317-319. doi: 10.1007/s00706-011-0451-4

    4. [4]

      Yu J, Zuo L H, Liu H J. Synthesis and Application of a Chiral Ionic Liquid Functionalized β-Cyclodextrin as a Chiral Selector in Capillary Electrophoresis[J]. Biomed Chromatogr, 2013,27(8):1027-1033.  

    5. [5]

      Zhang L F, Zhang Z H, Li N. Synthesis and Evaluation of a Novel β-Cyclodextrin Derivative for Oral Insulin Delivery and Absorption[J]. Int J Biol Macromol, 2013,61:494-500. doi: 10.1016/j.ijbiomac.2013.08.034

    6. [6]

      García A, Leonardi D, Lamas M C. Promising Applications in Drug Delivery Systems of a Novel β-Cyclodextrin Derivative Obtained by Green Synthesis[J]. Bioorg Med Chem Lett, 2016,26(2):602-608. doi: 10.1016/j.bmcl.2015.11.067

    7. [7]

      Chen Y, Liu Y. Cyclodextrin-based Bioactive Supramolecular Assemblies[J]. Chem Soc Rev, 2010,39(2):495-505. doi: 10.1039/B816354P

    8. [8]

      Tang B, Liang H L, Xu K H. An Improved Synthesis of Disulfides Linked β-Cyclodextrin Dimer and Its Analytical Application for Dequalinium Chloride Determination by Spectrofluorimetry[J]. Anal Chim Acta, 2005,554(1/2):31-36.  

    9. [9]

      Chen D M, Chen Z Z, Xu K H. Studies on the Supramolecular Interaction Between Dimethomorph and Disulfide Linked β-Cyclodextrin Dimer by Spectrofluorimetry and Its Analytical Application[J]. J Agric Food Chem, 2011,59(9):4424-4428. doi: 10.1021/jf200343b

    10. [10]

      Casas-Solvas J M, Martos-Maldonado M C, Vargas-berenguel A. Synthesis of β-Cyclodextrin Derivatives Functionalized with Azobenzene[J]. Tetrahedron, 2008,64(48):10919-10923. doi: 10.1016/j.tet.2008.08.098

    11. [11]

      Ma H C, Wang F, Li W F. Supramolecular Assemblies of Azobenzene-β-Cyclodextrin Dimers and Azobenzene Modified Polycaprolactones[J]. J Phys Org Chem, 2014,27(9):722-728. doi: 10.1002/poc.v27.9

    12. [12]

      Kuad P, Miyawaki A, Takashima Y. External Stimulus-responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer[J]. J Am Chem Soc, 2007,129(42):12630-12631. doi: 10.1021/ja075139p

    13. [13]

      Morin-Crini N, Crini G. Environmental Applications of Water-insoluble-cyclodextrin-epichlorohydrin Polymers[J]. Prog Polym Sci, 2013,38(2):344-368. doi: 10.1016/j.progpolymsci.2012.06.005

    14. [14]

      Alsbaiee A, Smith B J, Xiao L L. Rapid Removal of Organic Micropollutants from Water by a Porous β-Cyclodextrin Polymer[J]. Nature, 2016,529(7585):190-U146.  

    15. [15]

      Yang S Y, Hoonor R, Jin H S. Synthesis and Characterization of Cationic and Anionic Cyclodextrin Oligomers and Their Use in Layer-by-Layer Film Formation[J]. Bull Korean Chem Soc, 2013,34(7):2016-2022. doi: 10.5012/bkcs.2013.34.7.2016

    16. [16]

      LIAO Ping, HE Ping, WANG Yu. Process on Nano-assembly Based on Cyclodextrins[J]. Chem World, 2009,50(3):178-185.  

    17. [17]

      Liu Y, Yu L, Chen Y. Construction and DNA Condensation of Cyclodextrin-based Polypseudorotaxanes with Anthryl Grafts[J]. J Am Chem Soc, 2007,129(35):10656-10657. doi: 10.1021/ja073882b

    18. [18]

      Gonzalez H, Hwang S J, Davis M E. New Class of Polymers for the Delivery of Macromolecular Therapeutics[J]. J Am Chem Soc, 1999,10(6):1068-1074.  

    19. [19]

      Davis M E, Brewster M E. Cyclodextrin-based Pharmaceutics:Past, Present and Future[J]. Nat Rev Drug Discovery, 2004,3(12):1023-1035. doi: 10.1038/nrd1576

    20. [20]

      Li J, Yang C, Li H Z. Cationic Supramoleculars Composed of Multiple Oligoethylenimine-grafted β-Cyclodextrins Threaded on a Polymer Chain for Efficient Gene Delivery[J]. Adv Mater, 2006,18(22):2969-2974. doi: 10.1002/(ISSN)1521-4095

    21. [21]

      Li J, Loh X. Cyclodextrin-based Supramolecular Architectures:Syntheses, Structures, and Applications for Drug and Gene Delivery[J]. Adv Drug Delivery Rev, 2008,60(9):1000-1017. doi: 10.1016/j.addr.2008.02.011

    22. [22]

      Mathew A, Natarajan G, Lehtowaara L. Supramolecular Functionalization and Concomitant Enhancement in Properties of Au25 Clusters[J]. J Am Chem Soc, 2014,8(1):139-152.

    23. [23]

      Chen Y, Liu Y. Construction and Functions of Cyclodextrin-based 1D Supramolecular Strands and Their Secondary Assemblies[J]. Adv Mater, 2015,27(36):5403-5409. doi: 10.1002/adma.201501216

    24. [24]

      Liu Y, Yang Y W, Chen Y. Polyrotaxane with Cyclodextrins as Stoppers and Its Assembly Behavior[J]. Macromolecules, 2005,38(13):5838-5840. doi: 10.1021/ma047327v

    25. [25]

      Ke C F, Hou S, Zhang H Y. Controllable DNA Condensation Through Cucurbit[6] uril in 2D Pseudopolyrotaxanes[J]. Chem Commun, 2007,32(32):3374-3376.

    26. [26]

      Li Z Q, Zhang Y M, Chen Y. A Supramolecular Tubular Nanoreactor[J]. Chem Eur J, 2014,20(28):8566-8570. doi: 10.1002/chem.201402612

    27. [27]

      Sun H L, Chen Y, Zhao J. Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β-Cyclodextrin Dimers[J]. Angew Chem Int Ed, 2015,54(32):9376-9380. doi: 10.1002/anie.201503614

    28. [28]

      Guo M Y, Jiang M, Pispas S. Supramolecular Hydrogels Made of End-functionalized Low-molecular-weight PEG and R-cyclodextrin and Their Hybridization with SiO2 Nanoparticles Through Host-guest Interaction[J]. Macromolecules, 2008,41(24):9744-9749. doi: 10.1021/ma801975s

    29. [29]

      Liu J H, Chen G S, Guo M. Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC)[J]. Macromolecules, 2010,43(19):8086-8093. doi: 10.1021/ma101437k

    30. [30]

      Liu J H, Chen G S, Jiang M. Supramolecular Hybrid Hydrogels from Noncovalently Functionalized Graphene with Block Copolymers[J]. Macromolecules, 2011,44(19):7682-7691. doi: 10.1021/ma201620w

    31. [31]

      Du P, Liu J H, Chen G S. Dual Responsive Supramolecular Hydrogel with Electrochemical Activity[J]. Langmuir, 2011,27(15):9602-9608. doi: 10.1021/la201843z

    32. [32]

      Du P, Chen G S, Jiang M. Electrochemically Sensitive Supra-crosslink and Its Corresponding Hydrogel[J]. Sci China Chem, 2012,55(5):836-843. doi: 10.1007/s11426-012-4515-z

    33. [33]

      Tao W, Liu Y, Jiang B B. A Linear-hyperbranched Supramolecular Amphiphile and Its Self Assembly into Vesicles with Great Ductility[J]. J Am Chem Soc, 2012,134(2):762-764. doi: 10.1021/ja207924w

    34. [34]

      Liu Y, Yu C Y, Jin H B. A Supramolecular Janus Hyperbranched Polymer and Its Photoresponsive Self-assembly of Vesicles with Narrow Size Distribution[J]. J Am Chem Soc, 2013,135(12):4765-4770. doi: 10.1021/ja3122608

    35. [35]

      LI Huimei, WANG Jie, NI Yunzhou. Synthesis of a Linear-hyperbranched Supramolecular Polymer and Its Light-responsive Self-assembly Behavior[J]. Acta Chim Sin, 2016,74(5):415-421. doi: 10.6023/A16020076

    36. [36]

      Dong R J, Chen H Y, Wang D L. Supramolecular Fluorescent Nanoparticles for Targeted Cancer Imaging[J]. ACS Macro Lett, 2012,1(10):1208-1211. doi: 10.1021/mz300375c

    37. [37]

      Li Q L, Wang L Z, Qiu X L. Stimuli-responsive Biocompatible Nanovalves Based on β-Cyclodextrin Modified Poly (glycidyl methacrylate)[J]. Polym Chem, 2014,5(10):3389-3395. doi: 10.1039/c4py00041b

    38. [38]

      Gu W X, Li Q L, Lu H G. Construction of Stable Polymeric Vesicles Based on Azobenzene and Beta-cyclodextrin Grafted Poly (glycerol methacrylate) s for Potential Applications in Colon-specific Drug Delivery[J]. Chem Commun, 2015,51(22):4715-4718. doi: 10.1039/C5CC00628G

    39. [39]

      Toomari Y, Namazi H, Akbar E A. Synthesis of the Dendritic Type β-Cyclodextrin on Primary Face via Click Reaction Applicable as Drug Nanocarrier[J]. Carbohydr Polym, 2015,132:205-213. doi: 10.1016/j.carbpol.2015.05.087

    40. [40]

      Yin J J, Sharma S, Shumyak S P. Synthesis and Biological Evaluation of Novel Folic Acid Receptor-targeted, β-Cyclodextrin-based Drug Complexes for Cancer Treatment[J]. Plos One, 2013,8(5)e62289. doi: 10.1371/journal.pone.0062289

    41. [41]

      Tofzikovskaya Z, Casey A, Howe O. In Vitro Evaluation of the Cytotoxicity of a Folate-modified β-Cyclodextrin as a New Anti-cancer Drug Delivery System[J]. J Inclus Phenom Macrocyclic Chem, 2015,81(1/2):85-94.  

    42. [42]

      Shu C, Li R X, Guo J. New Generation of β-Cyclodextrin-chitosan Nanoparticles Encapsulated Quantum Dots Loaded with Anticancer Drug for Tumor-target Drug Delivery and Imaging of Cancer Cells[J]. J Nanopart Res, 2013,15(12):1-14.  

    43. [43]

      Shi Y J, Chang S, Cui W Y. Gefitinib Loaded Folate Decorated Bovine Serum Albumin Conjugated Carboxymethyl-beta-cyclodextrin Nanoparticles Enhance Drug Delivery and Attenuate Autophagy in Folate Receptor-positive Cancer Cells[J]. J Nanobiotechnol, 2014,12(1):1-11. doi: 10.1186/1477-3155-12-1

    44. [44]

      Huang X, Yi C X, Fan Y J. Magnetic Fe3O4 Nanoparticles Grafted with Single-chain Antibody (scFv) and Docetaxel Loaded β-Cyclodextrin Potential for Ovarian Cancer Dual-targeting Therapy[J]. Mater Sci Eng C, 2014,42:325-332. doi: 10.1016/j.msec.2014.05.041

    45. [45]

      Wei G C, Dong R H, Wang D. Functional Materials from the Covalent Modification of Reduced Graphene Oxide and β-Cyclodextrin as a Drug Delivery Carrier[J]. New J Chem, 2014,38(1):140-145. doi: 10.1039/C3NJ00690E

    46. [46]

      Ye Y J, Sun Y, Zhao H L. A Novel Lactoferrin-modified β-Cyclodextrin Nanocarrier for Brain-targeting Drug Delivery[J]. Int J Pharm, 2013,458(1):110-117. doi: 10.1016/j.ijpharm.2013.10.005

    47. [47]

      Li R C, Zhang X T, Zhang Q Y. β-Cyclodextrin-conjugated Hyaluronan Hydrogel as a Potential Drug Sustained Delivery Carrier for Wound Healing[J]. J Appl Polym Sci, 2016,133(9):1-8.

    48. [48]

      Ping Y, Hu Q D, Tang G P. FGFR-targeted Gene Delivery Mediated by Supramolecular Assembly Between β-Cyclodextrin-crosslinked PEI and Redox-sensitive PEG[J]. Biomaterials, 2013,34(27):6482-6494. doi: 10.1016/j.biomaterials.2013.03.071

    49. [49]

      Li R Q, Niu Y L, Zhao N N. Series of New β-Cyclodextrin-cored Starlike Carriers for Gene Delivery[J]. ACS Appl Mater Interfaces, 2014,6(6):3969-3978. doi: 10.1021/am5005255

    50. [50]

      Yin H, Zhao F, Zhang D H. Hyaluronic Acid Conjugated β-Cyclodextrin-oligoethylenimine Star Polymer for CD44-targeted Gene Delivery[J]. Int J Pharm, 2015,483(1-2):169-179. doi: 10.1016/j.ijpharm.2015.02.022

    51. [51]

      Liang L Y, Diallo A K., Salmon L. Catalysis of C-C Cross-coupling Reactions in Aqueous Solvent by Bis-and Tris (ferrocenyltriazolylmethyl) arene-β-cyclodextrin-Stabilized, Pd0 Nanoparticles[J]. Eur J Inorg Chem, 2012,17:2950-2958.  

    52. [52]

      Decottignies A, Fihri A, Azemar G. Ligandless Suzuki-Miyaura Reaction in Neat Water with or Without Native β-Cyclodextrin as Additive[J]. Catal Commun, 2013,32:101-107. doi: 10.1016/j.catcom.2012.12.004

    53. [53]

      Potier J, Menuel S, Monflier E. Synergetic Effect of Randomly Methylated β-Cyclodextrin and a Supramolecular Hydrogel in Rh-catalyzed Hydroformylation of Higher Olefins[J]. J Am Chem Soc, 2014,4(7):2342-2346.  

    54. [54]

      He K C, Qiu F X, Qin J. Preparation and Characterization of L-Phenylalanine-derivatized β-Cyclodextrin-bonded Silica and Its Application on Chiral Separation of Alanine Acid Racemates[J]. Korean J Chem Eng, 2013,30(11):2078-2087. doi: 10.1007/s11814-013-0160-2

    55. [55]

      Hong J S, Park J H. Chiral Separation of Basic Compounds on Sulfated β-Cyclodextrin-coated Zirconia Monolith by Capillary Electrochromatography[J]. Bull Korean Chem Soc, 2013,34(6):1809-1813. doi: 10.5012/bkcs.2013.34.6.1809

    56. [56]

      Chang Y X, Bai B, Du L M. Effect of Single-walled Carbon Nanotubes on Hydroxypropyl-β-cyclodextrin Stationary Phase[J]. J Chil Chem Soc, 2013,58(58):2209-2212.  

    57. [57]

      Bhattarai B, Muruganandham M, Suri R P S. Development of High Efficiency Silica Coated β-Cyclodextrin Polymeric Adsorbent for the Removal of Emerging Contaminants of Concern from Water[J]. J Hazard Mater, 2014,273:146-154. doi: 10.1016/j.jhazmat.2014.03.044

    58. [58]

      Mamba G, Mbianda X Y, Govender P P. Phosphorylated Multiwalled Carbon Nanotube-Cyclodextrin Polymer:Synthesis, Characterisation and Potential Application in Water Purification[J]. Carbohydr Polym, 2013,98(1):470-476. doi: 10.1016/j.carbpol.2013.06.034

    59. [59]

      Kyzas G Z, Lazaridis N K, Bikiaris D N. Optimization of Chitosan and β-Cyclodextrin Molecularly Imprinted Polymer Synthesis for Dye Adsorption[J]. Carbohydr Polym, 2013,91(1):198-208. doi: 10.1016/j.carbpol.2012.08.016

    60. [60]

      Mangolim C S, Moriwaki C, Nogueira A C. Curcumin-β-Cyclodextrin Inclusion Complex:Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-ray Diffraction and Photoacoustic Spectroscopy, and Food Application[J]. Food Chem, 2014,153(153):361-370.  

    61. [61]

      Jeong Y K, Kwon T, Lee I. Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries[J]. Nano Lett, 2014,14(2):864-870. doi: 10.1021/nl404237j

    62. [62]

      Liu X J, Jiang W C, Gou S H. Synthesis and Evaluation of Novel Water-soluble Copolymers Based on Acrylamide and Modular β-Cyclodextrin[J]. Carbohydr Polym, 2013,96(1):47-56. doi: 10.1016/j.carbpol.2013.03.053

    63. [63]

      Sun Y, Xia D H, Xiang Y Z. A Novel Method for Removing Sulfur Compounds from Light Oil by Molecular Recognition with β-Cyclodextrin[J]. Pet Sci Technol, 2008,26(17):2023-2032. doi: 10.1080/10916460701287730

    64. [64]

      XIA Daohong, DUAN Zunbin, BU Tingting, et al. A Light Oil Desulfrizer and Its Usage Based on Supramolecular Inclusion:CN, 2015105126768.A[P]. 2015-12-0(in Chinese).

    65. [65]

      XIA Daohong, BU Tingting, DUAN Zunbin, et al. A Fuel Oil Denitrifier and Its Usage Based on Supramolecular Inclusion:CN, 2015105087050.A[P]. 2015-11-25(in Chinese).

    66. [66]

      Duan Z B, Li L L, Bu T T, et al. A Green & Natural Method for Removing of Nitride from Light Oil by β-Cyclodextrin Aqueous Solution Through Molecular Recognition[C]//The Second Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development. Kunming, 2016:N/A.

  • 加载中
    1. [1]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    2. [2]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    12. [12]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    16. [16]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    20. [20]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

Metrics
  • PDF Downloads(13)
  • Abstract views(1072)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return