Citation: SUN Huiliang, YANG Yike, LI Xiao, WANG Hua, ZHAN Hongmei, CHENG Yanxiang. Polymerization of AB-Type Fluorene Monomer Using Pd (Ⅱ) Complexes Based on Dithieno[2, 3-b: 2', 3'-d]thiophene as Initiators[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 172-179. doi: 10.11944/j.issn.1000-0518.2017.02.160146 shu

Polymerization of AB-Type Fluorene Monomer Using Pd (Ⅱ) Complexes Based on Dithieno[2, 3-b: 2', 3'-d]thiophene as Initiators

  • Corresponding author: WANG Hua, hwang@henu.edu.cn; hwang@henu.edu.cn CHENG Yanxiang, yanxiang@ciac.ac.cn; yanxiang@ciac.ac.cn
  • Received Date: 11 April 2016
    Revised Date: 7 June 2016
    Accepted Date: 8 June 2016

    Fund Project: the National Natural Science Foundation of China 21404101the National Natural Science Foundation of China 21174141the National Natural Science Foundation of China 51303172

Figures(7)

  • Aryl palladium complex (bt-DTT) Pd (PCy3)2Br was synthesized by oxidative addition of 5-bromo-2-trimethylsilanyl-dithieno[2, 3-b:2', 3'-d]thiophene (bt-DTT-Br) to bis (tericlohexylphosphine) palladium (Pd (PCy3)2). X-ray crystal structure analysis reveals that the complex adopts a nearly square-planar geometry around central Pd atom with the expected trans configuration of the phosphine ligands. The complex can initiate the polymerization of AB-type fluorene monomer under heating conditions to afford the polyfluorene with the defined end group of aryl group bt-DTT derived from the complex (bt-DTT) Pd (PCy3)2Br. The similar conjugated polymers can also be prepared by employing the aryl palladium complexes in situ generated from bt-DTT-Br/Pd (0)-species as initiators. Polymerization of AB-type fluorene monomers is achieved at room temperature to give the single polyfluorene with the well-defined end groups while initiators are the complexes with the ancillary ligand of tris(2-methylphenyl) phosphine (P (o-tol)3) or tri-tert-butylphosphine (P (t-Bu)3). Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra confirm that the polymers bear a bt-DTT group at one end and a Br/H atom or end-capping group at the other end. Gel permeation chromatography (GPC) analyses demonstrate that molecular mass of polymers increases linearly with increase of the molar ratio of monomer to catalyst, indicating that the polymerizations proceed through the catalyst-transfer mechanism.
  • 加载中
    1. [1]

      CHEN Lei, CHENG Yanxiang, XIE Zhiyuan. Red Electroluminescent Polyfluorenes Containing D-A Type Naphothiadiazole and Benzoselenadiazole[J]. Chinese J Appl Chem, 2011,28(11):1229-1238.  

    2. [2]

      LI Zidong, ZHAO Xiaoli, YANG Xiaoniu. Advance on Device Thermal Stability of Polymer Solar Cells[J]. Chinese J Appl Chem, 2016,33(1):1-17.  

    3. [3]

      LI Jing, FU Hongwei, HU Pan. Amphiphatic Palladium Complexes with Polyethoxylated Groups and Their Application in Synthesis of Poly (9, 9-dioctyfluorene)[J]. Acta Polym Sin, 2013(9):1143-1150.  

    4. [4]

      BIAN Chunlei, JIANG Guoxin, CHENG Yanxiang. Poly (Aryl Ether) s for Efficient White Electroluminescence with Simultaneous Bicolor Emission[J]. Acta Polym Sin, 2012(3):334-343.  

    5. [5]

      Bernius M T, Inbasekaran M, O'Brien J. Progress with Light-emitting Polymers[J]. Adv Mater, 2000,12(23):1737-1750. doi: 10.1002/(ISSN)1521-4095

    6. [6]

      Knappke C E I, Wangelin A J V. 35 Years of Palladium-catalyzed Cross-coupling with Grignard Reagents:How Far Have We Come[J]. Chem Soc Rev, 2011,40(40):4948-4962.

    7. [7]

      Amarajothi D, Asiri A M, Hermenegildo G. Metal-Organic Frameworks Catalyzed C-C and C-Heteroatom Coupling Reactions[J]. Chem Soc Rev, 2011,44(7):1922-1947.

    8. [8]

      Sellars J D, Steel P G. Transition Metal-catalysed Cross-coupling Reactions of P-Activated Enols[J]. Chem Soc Rev, 2011,40(10):5170-5180. doi: 10.1039/c1cs15100b

    9. [9]

      Kappaun S, Scheiber H, Trattnig R. Defect Chemistry of Polyfluorenes:Identification of the Origin of "Interface Defects" in Polyfluorene Based Light-emitting Devices[J]. Chem Commun, 2008,41(41):5170-5172.  

    10. [10]

      Sheina E E, Liu J S, Iovu M C. Chain Growth Mechanism for Regioregular Nickel-initiated Cross-coupling Polymerizations[J]. Macromolecules, 2004,37(10):3526-3528. doi: 10.1021/ma0357063

    11. [11]

      Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth Polymerization for Poly (3-Hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity[J]. Macromolecules, 2004,37(4):1169-1171. doi: 10.1021/ma035396o

    12. [12]

      Yokoyama A, Suzuki H, Kubota Y. Chain-growth Polymerization for the Synthesis of Polyfluorene via Suzuki-Miyaura Coupling Reaction from an Externally Added Initiator Unit[J]. J Am Chem Soc, 2007,129(23):7236-7237. doi: 10.1021/ja070313v

    13. [13]

      Fischer C S, Baier M C, Mecking S. Enhanced Brightness Emission-tuned Nanoparticles from Heterodifunctional Polyfluorene Building Blocks[J]. J Am Chem Soc, 2013,135(3):1148-1154. doi: 10.1021/ja311497e

    14. [14]

      Zhang H H, Hu Q S, Hong K. Accessing Conjugated Polymers with Precisely Controlled Heterobisfunctional Chain Ends via Post-polymerization Modification of the OTf Group and Controlled Pd (0)/t-Bu3P-catalyzed Suzuki Cross-coupling Polymerization[J]. Chem Commun, 2015,51(51):14869-14872.  

    15. [15]

      Elmalem E, Biedermann F, Johnson K. Synthesis and Photophysics of Fully π-Conjugated Heterobis-functionalized Polymeric Molecular Wires via Suzuki Chain-growth Polymerization[J]. J Am Chem Soc, 2012,134(42):17769-17777. doi: 10.1021/ja3080677

    16. [16]

      Yokozawa T, Ohta Y. Transformation of Step-growth Polymerization into Living Chain-growth Polymerization[J]. Chem Rev, 2016,116(4):1950-1968. doi: 10.1021/acs.chemrev.5b00393

    17. [17]

      Fu H W, Li J, Zhang Z L. Synthesis of Novel Polyfluorene with Defined Group in the Center Using Aryl Dipalladium Complex as an Initiator[J]. J Organomet Chem, 2013,738(15):55-58.

    18. [18]

      Zhang Z L, Hu P, Li X. Investigation of Suzuki Miyaura Catalyst-transfer Polycondensation of AB-Type Fluorene Monomer Using Coordination-saturated Aryl Pd (Ⅱ) Halide Complexes as Initiators[J]. J Polym Sci Polym Chem, 2015,53(12):1457-1463. doi: 10.1002/pola.27577

    19. [19]

      Wang Y G, Wang Z H, Zhao D F. Efficient Synthesis of Trimethylsilyl-Substituted Dithieno[2, 3-b:3', 2'-d]thiophene, Tetra[2, 3-thienylene] and Hexa[2, 3-thienylene] from Substituted[3, 3']Bithiophenyl[J]. Synlett, 2007,3(15):2390-2394.

    20. [20]

      Sun H L, Shi J W, Zhang Z L. Synthesis and Structure of Bull's Horn-shaped Oligothienoacene with Seven Fused Thiophene Rings[J]. J Org Chem, 2013,78(12):6271-6275. doi: 10.1021/jo4002036

    21. [21]

      Wang Z H, Shi J W, Wang J. Syntheses and Crystal Structures of Benzohexathia[J]. Org Lett, 2010,12(3):456-458. doi: 10.1021/ol902613g

    22. [22]

      Li C L, Shi J W, Xu L. Syntheses and Crystal Structures of Fused Thiophenes:[J]. J Org Chem, 2009,74(1):408-412. doi: 10.1021/jo802080g

    23. [23]

      Yi W J, Zhang S, Sun H L. Isomers of Organic Semiconductors Based on Dithienothiophenes:The Effect of Sulphur Atoms Positions on the Intermolecular Interactions and Field-effect Performances[J]. J Mater Chem C, 2015,3(3):10856-10861.  

    24. [24]

      Shi J W, Li Y B, Jia M. Organic Semiconductors Based on Annelated Boligothiophenes and Its Application for Organic Field-effect Transistors[J]. J Mater Chem, 2011,8(44):17612-17614.  

    25. [25]

      Zhang Z J, Tian H K, Liu Q. Synthesis of Fluorene-based Oligomeric Organoboron Reagents via Kumada, Heck, and Stille Cross-coupling Reactions[J]. J Org Chem, 2006,71(11):4332-4335. doi: 10.1021/jo0602470

    26. [26]

      Lin S T, Tung Y C, Chen W C. Synthesis, Structures and Multifunctional Sensory Properties of Poly[2, 7-(9, 9-Dihexylfluorene)]-block-Poly[2-(Dimethylamino) Ethylmethacrylate] Rod-coil Diblock Copolymers[J]. J Mater Chem, 2008,18(33):3985-3992. doi: 10.1039/b807118g

    27. [27]

      Zhang H H, Xing C H, Hu Q S. Controlled Pd (0)/t-Bu3P-catalyzed Suzuki Cross-coupling Polymerization of AB-type Monomers with PhPd (t-Bu3P) I or Pd2(dba)3/t-Bu3P/ArI as the Initiator[J]. J Am Chem Soc, 2012,134(32):13156-13159. doi: 10.1021/ja302745t

    28. [28]

      Yokozawa T, Suzuki R, Nojima M. Precision Synthesis of Poly (3-Hexylthiophene) from Catalyst-transfer Suzuki-Miyaura Coupling Polymerization[J]. Macromol Rapid Commun, 2011,32(11):801-806. doi: 10.1002/marc.v32.11

    29. [29]

      GUO D C, SHENG H Q. Preferential Oxidative Addition in Palladium (0)-catalyzed Suzuki Cross-coupling Reactions of Dihaloarenes with Arylboronic Acids[J]. J Am Chem Soc, 2005,36(48):10006-10007.

    30. [30]

      Weber S K, Frank G, Ullrich S. Preferential Oxidative Addition in Suzuki Cross-coupling Reactions Across One Fluorene Unit[J]. Org Lett, 2006,8(18):4039-4044. doi: 10.1021/ol061476b

  • 加载中
    1. [1]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    4. [4]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(1)
  • Abstract views(474)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return