Citation: TANG Meng, LIU Gang, XING Yilin, ZHANG Aibo. Microwave Absorption Properties of Fe3O4/Polyetherimide Modified Multi-walled Carbon Nanotubes Hybrids Prepared by Solvothermal Method[J]. Chinese Journal of Applied Chemistry, ;2017, 34(2): 225-232. doi: 10.11944/j.issn.1000-0518.2017.02.160138 shu

Microwave Absorption Properties of Fe3O4/Polyetherimide Modified Multi-walled Carbon Nanotubes Hybrids Prepared by Solvothermal Method

  • Corresponding author: ZHANG Aibo, zhab2003@nwpu.edu.cn
  • Received Date: 5 April 2016
    Revised Date: 26 May 2016
    Accepted Date: 5 July 2016

    Fund Project: National Natural Science Foundation of China 51373136

Figures(9)

  • A nano-sized microwave absorbing Fe3O4/multi-walled carbon nanotubes (MWNTs) hybrids with dielectric and magnetic properties was fabricated by solvothermal method. The morphology and structure of Fe3O4/MWNTs hybrids were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), thermal gravimetric analysis (TGA) and transmission electron-microscopy (TEM). The results show that Fe3O4/MWNTs hybrids can be dispersed homogeneously, and Fe3O4 particles exhibit crystal integrity. The electromagnetic parameters of Fe3O4/MWNTs hybrids were measured by vector network instrument. The microwave absorbing properties shows that the microwave absorption frequency of Fe3O4/MWNTs hybrids shifts to low frequency with the increase of thickness. The maximum reflection loss (RL) of Fe3O4/MWNTs hybrids is -42.9 dB at 6.16 GHz and 3.2 nm thickness, and the frequency bandwidth is 1.42 GHz for -10 dB RL over.
  • 加载中
    1. [1]

      De R I M, Dinescu A, Sarasini F. Effect of Short Carbon Fibers And MWCNTs on Microwave Absorbing Properties of Polyester Composites Containing Nickel-coated Carbon Fibers[J]. Compos Sci Technol, 2010,70(1):102-109. doi: 10.1016/j.compscitech.2009.09.011

    2. [2]

      Yu L M, Li B, Sheng L L. The Microwave Absorbing Properties of SmCo Attached Single Wall Carbon Nanotube/Epoxy Composites[J]. J Alloy Compd, 2013,575:123-127. doi: 10.1016/j.jallcom.2013.03.286

    3. [3]

      Goh P S, Ismail A F, Ng B C. Directional Alignment of Carbon Nanotubes in Polymer Matrices:Contemporary Approaches and Future Advances[J]. Compos Part A-Appl S Manuf, 2014,56:103-126. doi: 10.1016/j.compositesa.2013.10.001

    4. [4]

      LUO Min, CHEN Zhenbing, CHEN Xiaoli. Present Status and Development Trends of Nanometric Wave-absorbing Materials for Human Body Protection[J]. Chem World, 2001,42(6):324-326.  

    5. [5]

      Huang X, Lu M, Zhang X. Carbon Microtube/Fe3O4 Nanocomposite with Improved Wave-absorbing Performance[J]. Scripta Mater, 2012,67(6):613-616. doi: 10.1016/j.scriptamat.2012.06.024

    6. [6]

      Vovchenko L, Matzui L, Oliynyk V. Anomalous Microwave Absorption in Multi-walled Carbon Nanotubes Filled with Iron[J]. Physica E, 2012,44(6):928-931. doi: 10.1016/j.physe.2011.10.018

    7. [7]

      Liu X. Study on Microwave-absorbing Behavior of Multi-walled CNTs[J]. Mod Appl Sci, 2010,4(9):124-129.  

    8. [8]

      Wang Y, Peng Z, Jiang W. Hydrothermal Synthesis and Microwave Absorption Properties of Fe3O4@SnO2 Core Shell Structured Microspheres[J]. J Mater Sci-Mater El, 2015,26(7):4880-4887. doi: 10.1007/s10854-015-2997-0

    9. [9]

      Dong S, Xu M, Wei J. The Preparation and Wide Frequency Microwave Absorbing Properties of Tri-Substituted-Bisphthalonitrile/Fe3O4 Magnetic Hybrid Microspheres[J]. J Magn Magn Mater, 2014,349:15-20. doi: 10.1016/j.jmmm.2013.08.038

    10. [10]

      Zhang H, Hong M, Chen P. 3D and Ternary rGO/MCNTs/Fe3O4 Composite Hydrogels:Synthesis, Characterization and Their Electromagnetic Wave Absorption Properties[J]. J Alloy Compd, 2016,665:381-387. doi: 10.1016/j.jallcom.2016.01.091

    11. [11]

      Lu S, Ma K, Wang X. Fabrication and Characterization of Polymer Composites Surface Coated Fe3O4/MWCNTs Hybrid Buckypaper as a Novel Microwave-Absorbing Structure[J]. J Appl Polym Sci, 2015,132(20):41974(1)-41974(7).  

    12. [12]

      Zhang T, Huang D Q, Yang Y. Fe3O4/Carbon Composite Nanofiber Absorber with Enhanced Microwave Absorption Performance[J]. Mater Sci Eng B, 2013,178(1):1-9. doi: 10.1016/j.mseb.2012.06.005

    13. [13]

      Zhang D, Li J, Zhang H. Ba (CoTi)1.22Fe9.56O19Ferrites Prepared by Sol-Gel Method and Solid-State Method Techniques[J]. Appl Phys A, 2016,122(4):1-8.  

    14. [14]

      Yi S C, Jung C Y, Kim W J. Synthesis of Pt/PEI-MWCNT Composite Materials on Polyethyleneimine-functionalized MWNTs as Supports[J]. Mater Res Bull, 2011,46(12):2433-2440. doi: 10.1016/j.materresbull.2011.08.025

    15. [15]

      Zhang Q, Zhu M F, Zhang Q H. The Formation of Magnetite Nanoparticles on The Sidewalls of Multiwalled Carbon Nanotubes[J]. Compos Sci Technol, 2009,69(5):633-638. doi: 10.1016/j.compscitech.2008.12.011

    16. [16]

      Zou W, Du Z, Liu Y. Functionalization of MWNTs Using Polyacryloyl Chloride and the Properties of CNT-Epoxy Matrix Nanocomposites[J]. Compos Sci Technol, 2008,68(15):3259-3264.  

    17. [17]

      Zhu C L, Zhang M L, Qiao Y J. Fe3O4/TiO2 Core/Shell Nanotubes:Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics[J]. J Phys Chem, 2010,114(39):16229-16234.  

    18. [18]

      Wang Y M, Wang L D, Wu H J. Enhanced Microwave Absorption Properties of α-Fe2O3-Filled Ordered Mesoporous Carbon Nanorods[J]. Mater, 2013,6(4):1520-1529. doi: 10.3390/ma6041520

    19. [19]

      Wang Y H. Microwave Absorbing Properties of NiZn-Ferrite Synthesized From Waste Iron Oxide Catalyst[J]. Mater Lett, 2006,60(27):3277-3280. doi: 10.1016/j.matlet.2006.03.010

    20. [20]

      Pawar S P, Marathe D A, Pattabhi K. Electromagnetic Interference Shielding Through MWNT Grafted Fe3O4 Nanoparticles in PC/SAN Blends[J]. J Mater Chem A, 2015,3(2):656-669. doi: 10.1039/C4TA04559A

    21. [21]

      Du Y, Liu W, Qiang R. Shell Thickness-dependent Microwave Absorption of Core Shell Fe3O4@C Composites[J]. ACS Appl Mater Interfaces, 2014,6(15):12997-13006. doi: 10.1021/am502910d

    22. [22]

      Tong G, Liu Y, Cui T. Tunable Dielectric Properties and Excellent Microwave Absorbing Properties of Elliptical Fe3O4 Nanorings[J]. Appl Phys Lett, 2016,108(7):072905(1)-072905(5). doi: 10.1063/1.4942095

  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    20. [20]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(2)
  • Abstract views(683)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return