Citation: LI Jin, FENG Xun, GUO Hui. Nanorod-Assembled WO3·0.33H2O Microstructures with Improved Photocatalytic Property[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 60-70. doi: 10.11944/j.issn.1000-0518.2017.01.160396 shu

Nanorod-Assembled WO3·0.33H2O Microstructures with Improved Photocatalytic Property

  • Corresponding author: FENG Xun, fengx@lynu.edu.cn
  • Received Date: 29 September 2016
    Revised Date: 19 October 2016
    Accepted Date: 18 November 2016

    Fund Project: the Key Scientific Research Project of Higher Education of He'nan 16A150036the Program for Science & Technology Innovation Talents in Universities of He'nan Province 2014HASTIT014Supported by the National Natural Science Foundation of China 21273101the Excellent Youth Foundation of He'nan Scientific Committee 164100510012

Figures(10)

  • Three-dimensional WO3·0.33H2O hierarchical microstructures consisting of nanorods have been successfully constructed through a facile hydrothermal route, employing sodium tungstate and dodecylbenzenesulfonic acid(DBSA) as precursors without the assistance of any additives. Remarkably, DBSA not only acts as a reagent to provide H+ but also serves as a surfactant to tailor the morphology of the as-synthesized products. The hierarchically-structured WO3·0.33H2O displays a strong structure-enhanced photocatalytic activity for the degradation of rhodamine B(RhB) under visible light irradiation, and the degradation ratio of RhB is 100% and is still kept at a high degradation ratio after using 5 times.
  • 加载中
    1. [1]

      Gu X Y, Wu F L, Lei B B. Three-Dimensional Nitrogen-Doped Graphene Frameworks Anchored with Bamboo-Like Tungsten Oxide Nanorods as High Performance Anode Materials for Lithium Ion Batteries[J]. J Power Sources, 2016,320(7):231-238.

    2. [2]

      Sin J C, Lam S M, Satoshi I. Sunlight Photocatalytic Activity Enhancement and Mechanism of Novel Europium-Doped ZnO Hierarchical Micro/Nanospheres for Degradation of Phenol[J]. Appl Catal B:Environ, 2014,148(4):258-268.

    3. [3]

      Cao L, Lu X Q, Pu F. Facile Fabrication of Superhydrophobic Bi/Bi2O3 Surfaces with Hierarchical Micro-Nanostructures by Electroless Deposition or Electrodeposition[J]. Appl Surf Sci, 2014,288(1):558-563.

    4. [4]

      Guo S Q, Zhang X, Zhou Z. Facile Preparation of Hierarchical Nb2O5 Microspheres with Photocatalytic Activities and Electrochemical Properties[J]. J Mater Chem A, 2014,2(24):9236-9243. doi: 10.1039/c4ta01567c

    5. [5]

      Yu T T, Cheng X L, Zhang X F. Highly Sensitive H2S Detection Sensors at Low Temperature Based on Hierarchically Structured NiO Porous Nanowall Arrays[J]. J Mater Chem A, 2015,3(22):11991-11999. doi: 10.1039/C5TA00811E

    6. [6]

      Wang Q, Yan J, Wang Y B. Three-Dimensional Flower-Like and Hierarchical Porous Carbon Materials as High-Rate Performance Electrodes for Supercapacitors[J]. Carbon, 2014,67(2):119-127.

    7. [7]

      Hwang J, Jo C, Hur K. Direct Access to Hierarchically Porous Inorganic Oxide Materials with Three-Dimensionally Interconnected Networks[J]. J Am Chem Soc, 2014,136(45):16066-16072. doi: 10.1021/ja5091172

    8. [8]

      Wei Y L, Huang Y F, Wu J H. Synthesis of Hierarchically Structured ZnO Spheres by Facile Methods and Their Photocatalytic DeNOx Properties[J]. J Hazard Mater, 2013,248(3):202-210.

    9. [9]

      Parlett C M A, Wilson K, Lee A F. Hierarchical Porous Materials:Catalytic Applications[J]. Chem Soc Rev, 2013,42(9):3876-3893. doi: 10.1039/C2CS35378D

    10. [10]

      Zhong Y, Wang Z X, Zhang R F. Interfacial Self-Assembly Driven Formation of Hierarchically Structured Nanocrystals with Photocatalytic Activity[J]. ACS Nano, 2014,8(1):827-833. doi: 10.1021/nn405492d

    11. [11]

      Li S X, Zhao Z F, Huang Y C. Hierarchically Structured WO3-CNT@TiO2 NS Composites with Enhanced Photocatalytic Activity[J]. J Mater Chem A, 2015,3(10):5467-5473. doi: 10.1039/C4TA06883A

    12. [12]

      Gerand B, Nowogrocki G, Figlarz M. A New Tungsten Trioxide Hydrate, WO3 1/3H2O:Preparation, Characterization, and Crystallographic Study[J]. J Solid State Chem, 1981,38(3):312-320. doi: 10.1016/0022-4596(81)90062-1

    13. [13]

      Li H Z, Wang J M, Shi G Y. Construction of Hydrated Tungsten Trioxide Nanosheet Films for Efficient Electrochromic Performance[J]. RSC Adv, 2015,5(1):196-201. doi: 10.1039/C4RA12099J

    14. [14]

      Liu B X, Wang J S, Wu J S. Proton Exchange Growth to Mesoporous WO3·0.33H2O Structure with Highly Photochromic Sensitivity[J]. Mater Lett, 2013,91(1):334-337.

    15. [15]

      Ma D K, Jiang J L, Huang J R. An Unusual Zinc Substrate-Induced Self-Construction Route to Various Hierarchical Architectures of Hydrated Tungsten Oxide[J]. Chem Commun, 2010,46(25):4556-4558. doi: 10.1039/c000055h

    16. [16]

      Song X N, Wang C Y, Wang W K. A Dissolution-Regeneration Route to Synthesize Blue Tungsten Oxide Flowers and Their Applications in Photocatalysis and Gas Sensing[J]. Adv Mater Interfaces, 2016,3(1):1500417-1500425. doi: 10.1002/admi.201500417

    17. [17]

      Li J Y, Huang J F, Wu J P. Microwave-Assisted Growth of WO3·0.33H2O Micro/Nanostructures with Enhanced Visible Light Photocatalytic Properties[J]. CrystEngComm, 2013,15(39):7904-7913. doi: 10.1039/c3ce41005f

    18. [18]

      Zheng Y, Chen G, Yu Y G. Template and Surfactant Free Synthesis of Hierarchical WO3·0.33H2O via a Facile Solvothermal Route for Photocatalytic RhB Degradation[J]. CrystEngComm, 2014,16(27):6107-6113. doi: 10.1039/c4ce00361f

    19. [19]

      He X Y, Hu C G, Yi Q N. Preparation and Improved Photocatalytic Activity of WO3·0.33H2O Nanonetworks[J]. Catal Lett, 2012,142(5):637-645. doi: 10.1007/s10562-012-0785-5

    20. [20]

      Li H Z, Shi G Y, Wang H Z. Self-Seeded Growth of Nest-Like Hydrated Tungsten Trioxide Film Directly on FTO Substrate For Highly Enhanced Electrochromic Performance[J]. J Mater Chem A, 2014,2(29):11305-11310. doi: 10.1039/c4ta01803f

    21. [21]

      Zhou L, Zou J, Yu M M. Green Synthesis of Hexagonal-Shaped WO3·0.33H2O Nanodiscs Composed of Nanosheets[J]. Cryst Growth Des, 2008,8(11):3993-3998. doi: 10.1021/cg800609n

    22. [22]

      Li J, Liu X H. Fabrication and Enhanced Electrochemical Properties of α-MoO3 Nanobelts Using Dodecylbenzenesulfonic Acid as Both Reactant And Surfactant[J]. CrystEngComm, 2014,16(2):184-190. doi: 10.1039/C3CE41495G

    23. [23]

      Zhang S L, Yao F, Yang L. Sulfur-Doped Mesoporous Carbon from Surfactant-Intercalated Layered Double Hydroxide Precursor as High-Performance Anode Nanomaterials for Both Li-Ion and Na-ion Batteries[J]. Carbon, 2015,93(11):143-150.

    24. [24]

      Pei B, Yao H X, Zhang W X. Hydrothermal Synthesis of Morphology-Controlled LiFePO4 Cathode Material for Lithium-Ion Batteries[J]. J Power Sources, 2012,220(12):317-323.

    25. [25]

      Yan Y, Yang H F, Zhang F Q. Surfactant-Templated Synthesis of 1D Single-Crystalline Polymer Nanostructures[J]. Small, 2006,2(4):517-521. doi: 10.1002/(ISSN)1613-6829

    26. [26]

      Ding J J, Yan W H, Sun S. Hydrothermal Synthesis of CaIn2S4-Reduced Graphene Oxide Nanocomposites with Increased Photocatalytic Performance[J]. ACS Appl Mater Interfaces, 2014,6(15):12877-12884. doi: 10.1021/am5028296

    27. [27]

      Liu B, Liu L M, Lang X F. Doping High-Surface-Area Mesoporous TiO2 Microspheres with Carbonate for Visible Light Hydrogen Production[J]. Energy Environ Sci, 2014,7(8):2592-2597. doi: 10.1039/C4EE00472H

    28. [28]

      Shi L, Liang L, Wang F X. Polycondensation of Guanidine Hydrochloride into a Graphitic Carbon Nitride Semiconductor with a Large Surface Area as a Visible Light Photocatalyst[J]. Catal Sci Technol, 2014,4(9):3235-3243. doi: 10.1039/C4CY00411F

    29. [29]

      Gao X Q, Yang C, Xiao F. WO3·0.33H2O Nanoplates:Hydrothermal Synthesis, Photocatalytic and Gas-Sensing Properties[J]. Mater Lett, 2012,84(8):151-153.

    30. [30]

      Shi J C, Hu G J, Cong R. Controllable Synthesis of WO3·nH2O Microcrystals with Various Morphologies by a Facile Inorganic Route and Their Photocatalytic Activities[J]. New J Chem, 2013,37(5):1538-1544. doi: 10.1039/c3nj41159a

    31. [31]

      Zheng Y, Chen G, Yu Y G. Synthesis of Carbon Doped WO3·0.33H2O Hierarchical Photocatalyst with Improved Photocatalytic Activity[J]. Appl Surf Sci, 2016,362(1):182-190.

    32. [32]

      Zhang W N, Lu G, Cui C L. A Family of Metal-Organic Frameworks Exhibiting Size-Selective Catalysis with Encapsulated Noble-Metal Nanoparticles[J]. Adv Mater, 2014,26(24):4056-4060. doi: 10.1002/adma.v26.24

    33. [33]

      Xiao G Q, Wen R M, Wei D M. Effects of the Steric Hindrance of Micropores in the Hyper-Cross-Linked Polymeric Adsorbent on the Adsorption of P-Nitroaniline in Aqueous Solution[J]. J Hazard Mater, 2014,280(9):97-103.

    34. [34]

      Li C M, Chen G N, Sun J X. Ultrathin Nanoflakes Constructed Erythrocyte-Like Bi2WO6 Hierarchical Architecture via Anionic Self-Regulation Strategy for Improving Photocatalytic Activity and Gas-Sensing Property[J]. Appl Catal B:Environ, 2015,163(2):415-423.

    35. [35]

      Jia H M, He W W, Wamer W G. Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures[J]. J Phys Chem C, 2014,118(37):21447-21456. doi: 10.1021/jp505783y

    36. [36]

      Lu D Z, Fang P F, Liu X Z. A Facile One-Pot Synthesis of TiO2-Based Nanosheets Loaded with MnxOy Nanoparticles with Enhanced Visible Light Driven Photocatalytic Performance for Removal of Cr(Ⅵ) or RhB[J]. Appl Catal B:Environ, 2015,179(12):558-573.

    37. [37]

      Huang H W, Liu L Y, Zhang Y H. Novel BiIO4/BiVO4 Composite Photocatalyst with Highly Improved Visible-Light-Induced Photocatalytic Performance for Rhodamine B Degradation and Photocurrent Generation[J]. RSC Adv, 2015,5(2):1161-1167. doi: 10.1039/C4RA12916D

    38. [38]

      Xin Y J, Wu L E, Ge L. Gold Palladium Bimetallic Nanoalloy Decorated Ultrathin 2D TiO2 Nanosheets as Efficient Photocatalysts with High Hydrogen Evolution Activity[J]. J Mater Chem A, 2015,3(16):8659-8666. doi: 10.1039/C5TA00759C

    39. [39]

      Kim J, Kim C J. Arsenite Oxidation-Enhanced Photocatalytic Degradation of Phenolic Pollutants on Platinized TiO2[J]. Environ Sci Technol, 2014,48(22):13384-13391. doi: 10.1021/es504082r

    40. [40]

      Wu Q P, Van De Krol R. Selective Photoreduction of Nitric Oxide to Nitrogen by Nanostructured TiO2 Photocatalysts:Role of Oxygen Vacancies and Iron Dopant[J]. J Am Chem Soc, 2012,134(22):9369-9375. doi: 10.1021/ja302246b

    41. [41]

      Zhang J, Nosaka Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous Suspension[J]. J Phys Chem C, 2013,117(3):1383-1391. doi: 10.1021/jp3105166

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    5. [5]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    10. [10]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    13. [13]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    14. [14]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    15. [15]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    16. [16]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    17. [17]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    18. [18]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    19. [19]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    20. [20]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

Metrics
  • PDF Downloads(1)
  • Abstract views(790)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return