Citation: CHEN Jinhua, JIANG Hongji. Kinetics of Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in the Presence of Anhydrous Ferric Chloride[J]. Chinese Journal of Applied Chemistry, ;2017, 34(1): 40-45. doi: 10.11944/j.issn.1000-0518.2017.01.160095 shu

Kinetics of Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in the Presence of Anhydrous Ferric Chloride

  • Corresponding author: JIANG Hongji, iamhjjiang@njupt.edu.cn
  • Received Date: 7 March 2016
    Revised Date: 25 April 2016
    Accepted Date: 7 June 2016

    Fund Project: the National Natural Science Foundation of China No. 21574068Priority Academic Program Development of Jiangsu Higher Education Institutions No. YX03001Supported by the Major Research Program from the State Ministry of Science and Technology No. 2012CB933301Natural Science Foundation of the Jiangsu Higher Education Institutions of China No. 15KJB150022

Figures(5)

  • Single-electron transfer living radical polymerization(SET-LRP) as an effective method is adopted to synthesize polymers with defined relative molecular mass, composition and specified molecular structure, which is powerful to adjust the molecular mass distribution of the obtained polymers in a wide range. To study the effects of the externally added anhydrous ferric chloride on the general SET-LRP polymerization kinetics of methyl acrylate, we carry out the research by using methyl 2-bromopropionate as the initiator and Cu(0)/tris(2-(dimethylamino)ethy)amine(Me6-TREN) as the composite catalytic system in dimethyl sulfoxide with different ratios of anhydrous ferric chloride. The experimental results indicate that the externally added anhydrous ferric chloride has an important influence on the polymerization kinetics of methyl acrylate. With increasing the concentration of iron ions in the solvent, the polymerization rates decrease and the induction period appears to be prolonged indicating that iron ions are involved in SET-LRP polymerization kinetics. This may be due to the decreased concentration of Cu(Ⅰ) relative to that of the reaction without the addition of any anhydrous ferric chloride. The current work will stimulate us to further clarify the origin of induction period in the copper(0) catalyzed SET-LRP of typical monomers.
  • 加载中
    1. [1]

      Percec V, Guliashvili T, Ladislaw J S. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25℃[J]. J Am Chem Soc, 2006,128(43):14156-14165. doi: 10.1021/ja065484z

    2. [2]

      Guliashvili T, Percec V. Synthesis of Perfectly Bifunctional Polyacrylates by Single-Electron-Transfer Living Radical Polymerization[J]. J Polym Sci Part A:Polym Chem, 2007,45(9):1607-1618. doi: 10.1002/(ISSN)1099-0518

    3. [3]

      Rosen B M, Percec V. Implications of Monomer and Initiator Structure on the Dissociative Electron-transfer Step of SET-LRP[J]. J Polym Sci Part A:Polym Chem, 2008,46(16):5663-5697. doi: 10.1002/pola.v46:16

    4. [4]

      Monteiro M J, Guliashvili T, Percec V. Kinetic Simulation of Single Electron Transfer-living Radical Polymerization of Methyl Acrylate at 25℃[J]. J Polym Sci Part A:Polym Chem, 2007,45(10):1835-1847. doi: 10.1002/(ISSN)1099-0518

    5. [5]

      Rosen B M, Percec V. A Density Functional Theory Computational Study of the Role of Ligand on the Stability of Cui and Cuii Species Associated with ATRP and SET-LRP[J]. J Polym Sci Part A:Polym Chem, 2007,45(21):4950-4964. doi: 10.1002/(ISSN)1099-0518

    6. [6]

      Ligadas G, Percec V. A Comparative Analysis of SET-LRP of MA in Solvents Mediating Different Degrees of Disproportionation of Cu(Ⅰ)Br[J]. J Polym Sci Part A:Polym Chem, 2008,46(20):6880-6895. doi: 10.1002/pola.v46:20

    7. [7]

      Ligadas G, Percec V. Ultrafast SET-LRP of Methyl Acrylate at 25℃ in Alcohols[J]. J Polym Sci Part A:Polym Chem, 2008,46(8):2745-2754. doi: 10.1002/(ISSN)1099-0518

    8. [8]

      Ligadas G, Rosen B M, Percec V. Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-mediated Radical Polymerization in MeCN at 25℃[J]. Macromolecules, 2008,41(22):8365-8371. doi: 10.1021/ma8018365

    9. [9]

      Rosen B M, Nguyen N H, Percec V. Cooperative and Synergistic Solvent Effects in SET-LRP of MA[J]. J Polym Sci Part A:Polym Chem, 2009,47(21):5591-5605. doi: 10.1002/pola.v47:21

    10. [10]

      Nguyen N H, Rosen B M, Percec V. New Efficient Reaction Media for SET-LRP Produced from Binary Mixtures of Organic Solvents and H2O[J]. J Polym Sci Part A:Polym Chem, 2009,47(21):5577-5590. doi: 10.1002/pola.v47:21

    11. [11]

      Ladislaw J S. Precision Synthesis of Covalent and Supramolecular Polymers[D]. Philadelphia:University of Pennsylvania,2008.

    12. [12]

      Matyjaszewski K, Pintauer T, Gaynor S. Removal of Copper-based Catalyst in Atom Transfer Radical Polymerization Using Ion Exchange Resins[J]. Macromolecules, 2000,33(4):1476-1478. doi: 10.1021/ma9911445

    13. [13]

      Rosen B M, Percec V. Single-electron Transfer and Single-electron Transfer Degenerative Chain Transfer Living Radical Polymerization[J]. Chem Rev, 2009,109(11):5069-5119. doi: 10.1021/cr900024j

    14. [14]

      Gibson V C, O'Reilly R K, Williams D. Polymerization of Methyl Methacrylate Using Four-coordinate (α-Diimine) Iron Catalysts:Atom Transfer Radical Polymerization vs Catalytic Chain Transfer[J]. Macromolecules, 2003,36(8):2591-2593. doi: 10.1021/ma034046z

    15. [15]

      Shao Q, Sun H M, Pang X G. A Neutral Ni(Ⅱ) Acetylide-mediated Radical Polymerization of Methyl Methacrylate Using the Atom Ttransfer Radical Polymerization Method[J]. Eur Polym, 2004,40(1):97-102. doi: 10.1016/j.eurpolymj.2003.09.004

    16. [16]

      Ren W Y, Jiang L, Dan Y. The Application of Copper(Ⅱ) of Deactivator on the Single-electron Transfer Living Radical Polymerization of e-Butyl Acrylate[J]. J Polym Sci Part A:Polym Chem, 2010,48(13):2793-2797. doi: 10.1002/pola.v48:13

    17. [17]

      Nguyen N H, Percec V. Dramatic Acceleration of SET-LRP of Methyl Acrylate During Catalysis with Activated Cu(0) Wire[J]. J Polym Sci Part A:Polym Chem, 2010,48(22):5109-5119. doi: 10.1002/pola.v48:22

    18. [18]

      Nguyen N H, Percec V. Acid Dissolution of Copper Oxides as a Method for the Activation of Cu(0) Wire Catalyst for SET-LRP[J]. J Polym Sci Part A:Polym Chem, 2011,49(19):4241-4252.  

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(2)
  • Abstract views(372)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return