Citation:
WU Lie, JIANG Xiue. Research Progress of Interfacial Interaction Between Graphene Material and Model Biomembrane[J]. Chinese Journal of Applied Chemistry,
;2016, 33(12): 1343-1354.
doi:
10.11944/j.issn.1000-0518.2016.12.160355
-
The booming of application of graphene material in biological field makes the study of nano-bio interface of graphene material become a hotspot of nano-bio interface. Biomembrane is the first barrier graphene material encountered when it is presented in a biological environment. Deep understanding the interaction between graphene material and biomembrane is of great significant in design and optimization of functional interface and management of nano-bio effect of graphene-based biomaterial. In this article, we gave a brief introduction of graphene material, systematically summarized the research progress of interfacial interaction between graphene material and model biomembrane during recent years, and presented out the perspective of further development in this field.
-
-
-
[1]
[1] Novoselov K S,Falko V I,Colombo L,et al. A Roadmap for Graphene[J]. Nature,2012,490(7419):192-200.
-
[2]
[2] Kostarelos K,Novoselov K S. Exploring the Interface of Graphene and Biology[J]. Science,2014,344(6181):261-263.
-
[3]
[3] Chen K L,Bothun G D. Nanoparticles Meet Cell Membranes:Probing Nonspecific Interactions Using Model Membranes[J]. Environ Sci Technol,2014,48(2):873-880.
-
[4]
[4] Perreault F,Fonseca de Faria A,Elimelech M. Environmental Applications of Graphene-Based Nanomaterials[J]. Chem Soc Rev,2015,44(16):5861-5896.
-
[5]
[5] Dreyer D R,Ruoff R S,Bielawski C W. From Conception to Realization:An Historial Account of Graphene and Some Perspectives for Its Future[J]. Angew Chem Int Ed,2010,49(49):9336-9344.
-
[6]
[6] Balandin A A,Ghosh S,Bao W,et al. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett,2008,8(3):902-907.
-
[7]
[7] Dreyer D R,Park S,Bielawski C W,et al. The Chemistry of Graphene Oxide[J]. Chem Soc Rev,2010,39(1):228-240.
-
[8]
[8] Hummers W S,Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc,1958,80(6):1339-1339.
-
[9]
[9] Marcano D C,Kosynkin D V,Berlin J M,et al. Improved Synthesis of Graphene Oxide[J]. ACS Nano,2010,4(8):4806-4814.
-
[10]
[10] Tung V C,Allen M J,Yang Y,et al. High-Throughput Solution Processing of Large-Scale Graphene[J]. Nat Nanotechnol,2009,4(1):25-29.
-
[11]
[11] Chen J,Zhang Y,Zhang M,et al. Water-Enhanced Oxidation of Graphite to Graphene Oxide with Controlled Species of Oxygenated Groups[J]. Chem Sci,2016,7(3):1874-1881.
-
[12]
[12] Peng L,Xu Z,Liu Z,et al. An Iron-Based Green Approach to 1-H Production of Single-Layer Graphene Oxide[J]. Nat Commun,2015,6:5716.
-
[13]
[13] Sreeprasad T S,Berry V. How Do the Electrical Properties of Graphene Change with Its Functionalization?[J]. Small,2013,9(3):341-350.
-
[14]
[14] Suk J W,Piner R D,An J,et al. Mechanical Properties of Monolayer Graphene Oxide[J]. ACS Nano,2010,4(11):6557-6564.
-
[15]
[15] Sanchez V C,Jachak A,Hurt R H,et al. Biological Interactions of Graphene-Family Nanomaterials:An Interdisciplinary Review[J]. Chem Res Toxicol,2012,25(1):15-34.
-
[16]
[16] Cote Laura J,Kim J,Tung Vincent C,et al. Graphene Oxide as Surfactant Sheets[J]. Pure Appl Chem,2010,83(1):95-110.
-
[17]
[17] Kim F,Cote L J,Huang J. Graphene Oxide:Surface Activity and Two-Dimensional Assembly[J]. Adv Mater,2010,22(17):1954-1958.
-
[18]
[18] Guo F,Kim F,Han T H,et al. Hydration-Responsive Folding and Unfolding in Graphene Oxide Liquid Crystal Phases[J]. ACS Nano,2011,5(10):8019-8025.
-
[19]
[19] Lerf A,He H,Forster M,et al. Structure of Graphite Oxide Revisited[J]. J Phys Chem B,1998,102(23):4477-4482.
-
[20]
[20] Szabó T,Berkesi O,Forgó P,et al. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides[J]. Chem Mater,2006,18(11):2740-2749.
-
[21]
[21] Rourke J P,Pandey P A,Moore J J,et al. The Real Graphene Oxide Revealed:Stripping the Oxidative Debris from the Graphene-Like Sheets[J]. Angew Chem Int Ed,2011,50(14):3173-3177.
-
[22]
[22] He W,Lu L. Revisiting the Structure of Graphene Oxide for Preparing New-Style Graphene-Based Ultraviolet Absorbers[J]. Adv Funct Mater,2012,22(12):2542-2549.
-
[23]
[23] Dimiev A M,Polson T A. Contesting the Two-Component Structural Model of Graphene Oxide and Reexamining the Chemistry of Graphene Oxide in Basic Media[J]. Carbon,2015,93:544-554.
-
[24]
[24] Naumov A,Grote F,Overgaard M,et al. Graphene Oxide:A One-Versus Two-Component Material[J]. J Am Chem Soc,2016,138(36):11445-11448.
-
[25]
[25] Dimiev A M,Alemany L B,Tour J M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model[J]. ACS Nano,2013,7(1):576-588.
-
[26]
[26] Bagri A,Mattevi C,Acik M,et al. Structural Evolution During the Reduction of Chemically Derived Graphene Oxide[J]. Nat Chem,2010,2(7):581-587.
-
[27]
[27] Wu L,Jiang X. Recent Developments in Methodology Employed to Study the Interactions Between Nanomaterials and Model Lipid Membranes[J]. Anal Bioanal Chem,2016,408(11):2743-2758.
-
[28]
[28] Frost R,Jönsson G E,Chakarov D,et al. Graphene Oxide and Lipid Membranes:Interactions and Nanocomposite Structures[J]. Nano Lett,2012,12(7):3356-3362.
-
[29]
[29] Frost R,Svedhem S,Langhammer C,et al. Graphene Oxide and Lipid Membranes:Size-Dependent Interactions[J]. Langmuir,2016,32(11):2708-2717.
-
[30]
[30] Li S H,Stein A J,Kruger A,et al. Head Groups of Lipids Govern the Interaction and Orientation Between Graphene Oxide and Lipids[J]. J Phys Chem C,2013,117(31):16150-16158.
-
[31]
[31] Lei H Z,Zhou X J,Wu H X,et al. Morphology Change and Detachment of Lipid Bilayers from the Mica Substrate Driven by Graphene Oxide Sheets[J]. Langmuir,2014,30(16):4678-4683.
-
[32]
[32] Liu X,Chen K L. Interactions of Graphene Oxide with Model Cell Membranes:Probing Nanoparticle Attachment and Lipid Bilayer Disruption[J]. Langmuir,2015,31(44):12076-12086.
-
[33]
[33] Ip A C F,Liu B W,Huang P-J J,et al. Oxidation Level-Dependent Zwitterionic Liposome Adsorption and Rupture by Graphene-Based Materials and Light-Induced Content Release[J]. Small,2013,9(7):1030-1035.
-
[34]
[34] Wang F,Liu B,Ip A C F,et al. Orthogonal Adsorption onto Nano-graphene Oxide Using Different Intermolecular Forces for Multiplexed Delivery[J]. Adv Mater,2013,25(30):4087-4092.
-
[35]
[35] Huang P-J J,Wang F,Liu J. Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry[J]. Langmuir,2016,32(10):2458-2463.
-
[36]
[36] Tu Y S,Lv M,Xiu P,et al. Destructive Extraction of Phospholipids from Escherichia Coli Membranes by Graphene Nanosheets[J]. Nat Nanotechnol,2013,8(8):594-601.
-
[37]
[37] Wu L,Zeng L,Jiang X. Revealing the Nature of Interaction Between Graphene Oxide and Lipid Membrane by Surface-Enhanced Infrared Absorption Spectroscopy[J]. J Am Chem Soc,2015,137(32):10052-10055.
-
[38]
[38] Osawa M. Surface-Enhanced Infrared Absorption[M]. Springer Berlin Heidelberg,2001:163-187.
-
[39]
[39] Jiang X E,Zaitseva E,Schmidt M,et al. Resolving Voltage-Dependent Structural Changes of a Membrane Photoreceptor by Surface-Enhanced IR Difference Spectroscopy[J]. Proc Natl Acad Sci USA,2008,105(34):12113-12117.
-
[40]
[40] Jiang X E,Engelhard M,Ataka K,et al. Molecular Impact of the Membrane Potential on the Regulatory Mechanism of Proton Transfer in Sensory Rhodopsin II[J]. J Am Chem Soc,2010,132(31):10808-10815.
-
[41]
[41] Wang T T,Bai J,Jiang X E,et al. Cellular Uptake of Nanoparticles by Membrane Penetration:A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry[J]. ACS Nano,2012,6(2):1251-1259.
-
[42]
[42] Ang P K,Jaiswal M,Lim C H Y X,et al. A Bioelectronic Platform Using a Graphene-Lipid Bilayer Interface[J]. ACS Nano,2010,4(12):7387-7394.
-
[43]
[43] Wang Y Y,Pham T D,Zand K,et al. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel[J]. ACS Nano,2014,8(5):4228-4238.
-
[44]
[44] Hirtz M,Oikonomou A,Georgiou T,et al. Multiplexed Biomimetic Lipid Membranes on Graphene by Dip-Pen Nanolithography[J]. Nat Commun,2013,4:2591.
-
[45]
[45] Tabaei S R,Ng W B,Cho S J,et al. Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene[J]. ACS Appl Mater Interfaces,2016,8(18):11875-11880.
-
[46]
[46] Yamazaki K,Kunii S,Ogino T. Characterization of Interfaces Between Graphene Films and Support Substrates by Observation of Lipid Membrane Formation[J]. J Phys Chem C,2013,117(37):18913-18918.
-
[47]
[47] Lima L,Fu W,Jiang L,et al. Graphene-Stabilized Lipid Monolayer Heterostructures:A Novel Biomembrane Superstructure[J]. Nanoscale,2016-8-31.http://pubs.rsc.org/en/content/articlepdf/2016/nr/c6nr05706c.[published online ahead of print].
-
[48]
[48] Liu J,Bao M,Li J,et al. Modulated Deformation of Lipid Membrane to Vesicles and Tubes Due to Reduction of Graphene Oxide Substrate under Laser Irradiation[J]. Carbon,2016,98:300-306.
-
[49]
[49] Titov AV,Král P,Pearson R. Sandwiched Graphene-Membrane Superstructures[J]. ACS Nano,2009,4(1):229-234.
-
[50]
[50] Guo R,Mao J,Yan L T. Computer Simulation of Cell Entry of Graphene Nanosheet[J]. Biomaterials,2013,34(17):4296-4301.
-
[51]
[51] Dallavalle M,Calvaresi M,Bottoni A,et al. Graphene Can Wreak Havoc with Cell Membranes[J]. ACS Appl Mater Interfaces,2015,7(7):4406-4414.
-
[52]
[52] Mao J,Guo R,Yan L T. Simulation and Analysis of Cellular Internalization Pathways and Membrane Perturbation for Graphene Nanosheets[J]. Biomaterials,2014,35(23):6069-6077.
-
[53]
[53] Luan B,Huynh T,Zhou R. Complete Wetting of Graphene by Biological Lipids[J]. Nanoscale,2016,8(10):5750-5754.
-
[54]
[54] Chen J,Zhou G,Chen L,et al. Interaction of Graphene and Its Oxide with Lipid Membrane:A Molecular Dynamics Simulation Study[J]. J Phys Chem C,2016,120(11):6225-6231.
-
[55]
[55] Wang T,Zhu S,Jiang X. Toxicity Mechanism of Graphene Oxide and Nitrogen-Doped Graphene Quantum Dots in RBCs Revealed by Surface-Enhanced Infrared Absorption Spectroscopy[J]. Toxicol Res,2015,4(4):885-894.
-
[56]
[56] Li Y,Yuan H,von dem Bussche A,et al. Graphene Microsheets Enter Cells Through Spontaneous Membrane Penetration at Edge Asperities and Corner Sites[J]. Proc Natl Acad Sci USA,2013,110(30):12295-12300.
-
[57]
[57] Yi X,Gao H. Cell Interaction with Graphene Microsheets:Near-orthogonal Cutting Versus Parallel Attachment[J]. Nanoscale,2015,7(12):5457-5467.
-
[58]
[58] Hu Q,Jiao B,Shi X,et al. Effects of Graphene Oxide Nanosheets on Ultrastructure and Biophysical Properties of Pulmonary Surfactant Film[J]. Nanoscale,2015,7(43):18025-18029.
-
[59]
[59] Yue T,Wang X,Zhang X,et al. Molecular Modeling of Interaction Between Lipid Monolayer and Graphene Nanosheets:Implications for Pulmonary Nanotoxicity and Pulmonary Drug Delivery[J]. RSC Adv,2015,5(38):30092-30106.
-
[1]
-
-
-
[1]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[2]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[3]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
-
[4]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[5]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[6]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[7]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[8]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[9]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[10]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[13]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[14]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[17]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[18]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[19]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[20]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[1]
Metrics
- PDF Downloads(8)
- Abstract views(267)
- HTML views(60)