Citation: KANG Fengwen, HAN Jin, PENG Mingying. Verifying the “Controversial” Available Sites via Typical Bi3+ Luminescent Feature:Exemplarily Based on the Ca2MgSi2O7:Bi3+ Phosphor[J]. Chinese Journal of Applied Chemistry, ;2016, 33(12): 1420-1427. doi: 10.11944/j.issn.1000-0518.2016.12.160325 shu

Verifying the “Controversial” Available Sites via Typical Bi3+ Luminescent Feature:Exemplarily Based on the Ca2MgSi2O7:Bi3+ Phosphor

  • Corresponding author: PENG Mingying, 
  • Received Date: 16 August 2016
    Available Online: 27 September 2016

    Fund Project:

  • Multi-photoemissions from multi-luminescent centers that correspond to multi available sites in a given crystal are frequently noticed in previous works. Depending on the exact type of dopant built into, compounds having multi available sites should correspondingly offer multi luminescent centers, but some kinds of such compounds sometimes exhibit only one luminescent center, exhibiting the "controversial" centers. According to previous works, the akermanite(Ca2MgSi2O7), which has been known as the classical afterglow host for a long term, belongs to this type of compounds having the "controversial" Ca sites. Here we report on utilizing the typical luminescent behavior of the non-rare-earth(non-RE) ion(Bi3+) to explore the issues of "controversial" Ca sites in Ca2MgSi2O7 crystal. Our results show that the excitation bands centering at 250 nm and 276 nm can pump all samples of Ca2MgSi2O7:Bi3+ to exhibit dual Bi3+-related photoemissions centering at 582 nm and~350 nm, respectively. In combination with the crystal structure analysis, the spectral results indicate that there are dual Bi3+ luminescent centers[denoted as Bi3+(Ⅰ) and Bi3+(Ⅱ)] at two different Ca2+ sites coordinating with six- and eight-oxygen atoms in the Ca2MgSi2O7 host. Surprisingly, the spectral results support the existence of the energy transfer from Bi3+(Ⅰ) to Bi3+(Ⅱ) and the process is found to be unidirectional. Further analysis indicated that the relative emission intensity of 582 nm and~350 nm derived from Bi3+(Ⅰ) and Bi3+(Ⅱ) centers is tightly relied on the incident excitation wavelength and the Bi3+ doping contents. Our results clearly prove that there are two available Ca sites instead of only one Ca site in Ca2MgSi2O7 crystal. Because of the reason, this work provides a new insight into verifying the available sites in some unknown or/and well-known crystals from another point of view.
  • 加载中
    1. [1]

      [1] Wang J,Zhang H R,Lei B F,et al. Enhanced Photoluminescence and Phosphorescence Properties of Red CaAlSiN3:Eu2+ Phosphor via Simultaneous UV-NIR Stimulation[J]. J Mater Chem C,2015,3(17):4445-4451.

    2. [2]

      [2] Yu R J,Li H J,Ma H L,et al. Luminescence Centers and Spectrum Characteristics of a Novel Eu2+-activated Hexa-aluminate CaZrBAl9O18[J]. Phys Status Solidi A,2014,211(4):811-816.

    3. [3]

      [3] Liu W R,Huang C H,Yeh C W,et al. A Study on the Luminescence and Energy Transfer of Single-Phase and Color-Tunable KCaY(PO4)2:Eu2+,Mn2+ Phosphor for Application in White-Light LEDs[J]. Inorg Chem,2012,51(18):9636-9641.

    4. [4]

      [4] Cao R P,Peng M Y,Qiu J R. Photoluminescence of Bi2+-doped BaSO4 as a Red Phosphor for White LEDs[J]. Opt Express,2012,20(23):A977-A983.

    5. [5]

      [5] Kang F W,Peng M Y,Zhang, Q Y,et al. Abnormal Anti-Quenching and Controllable Multi-Transitions of Bi3+ Luminescence by Temperature in a Yellow-Emitting LuVO4:Bi3+ Phosphor for UV-Converted White LEDs[J]. Chem-Eur J,2014,20(36):11522-11530.

    6. [6]

      [6] Kang F W,Yang X B,Peng M Y,et al. Red Photoluminescence from Bi3+ and the Influence of the Oxygen-Vacancy Perturbation in ScVO4:A Combined Experimental and Theoretical Study[J]. J Phys Chem C,2014,118(14):7515-7522.

    7. [7]

      [7] Kang F W,Zhang Y,Wondraczek L,et al. Processing-dependence and the Nature of the Blue-shift of Bi3+-related Photoemission in ScVO4 at Elevated Temperatures[J]. J Mater Chem C,2014,2(46):9850-9857.

    8. [8]

      [8] Kang F W,Zhang H S,Wondraczek L,et al. Band-Gap Modulation in Single Bi3+-Doped Y-Sc-Nb-Vanadates for Color Tuning Over the Whole Visible Spectrum[J]. Chem Mater,2016,28(8):2692-2703.

    9. [9]

      [9] Kang F W,Peng M Y,Yang X B,et al. Broadly Tuning Bi3+ Emission via Crystal Field Modulation in Solid Solution Compounds (Y,Lu,Sc)VO4:Bi for Ultraviolet Converted White LEDs[J]. J Mater Chem C,2014,2(30):6068-6076.

    10. [10]

      [10] Kang F W,Zhang Y,Peng M Y. Controlling the Energy Transfer via Multi Luminescent Centers to Achieve White Light/Tunable Emissions in a Single-Phased X2-Type Y2SiO5:Eu3+,Bi3+ Phosphor for Ultraviolet Converted LEDs[J]. Inorg Chem,2015,54(4):1462-1473.

    11. [11]

      [11] Li L Y,Peng M Y,Viana B,et al. Unusual Concentration Induced Antithermal Quenching of the Bi2+ Emission from Sr2P2O7:Bi2+[J]. Inorg Chem,2015,54(12):6028-6034.

    12. [12]

      [12] Peng M Y,Wondraczek L. Photoluminescence of Sr2P2O7:Bi2+ as a Red Phosphor for Additive Light Generation[J]. Opt Lett,2010,35(15):2544-2546.

    13. [13]

      [13] Liu C M,Qi Z M,Ma C G,et al. High Light Yield of Sr8(Si4O12)Cl8:Eu2+ under X-ray Excitation and Its Temperature-Dependent Luminescence Characteristics[J]. Chem Mater,2014,26(12):3709-3715.

    14. [14]

      [14] Yu M,Lin J,Fang J. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process:A Simple Method to Obtain Spherical Core-Shell Phosphors[J]. Chem Mater,2005,17(7):1783-1791.

    15. [15]

      [15] Wang J,Cheng Y,Huang Y L,et al. Structural and Luminescent Properties of Red-emitting Eu3+-doped Ternary Rare Earth Antimonates R3SbO7(R=La,Gd,Y)[J]. J Mater Chem C,2014,2(28):5559-5569.

    16. [16]

      [16] Zhang H W,Yamada H,Terasaki N,et al. Green Mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7: Eu,Dy[J]. J Electrochem Soc,2008,155(2):J55-J57.

    17. [17]

      [17] Sahu I P,Bisen D P,Brahme N. Structural Characterization and Optical Properties of Ca2MgSi2O7: Eu2+,Dy3+ Phosphor by Solid-state Reaction Method[J]. Luminescence,2014,30(5):526-532.

    18. [18]

      [18] Jiang L,Chang C K,Mao D L,et al. Luminescent Properies of Ca2MgSiO7 Phosphor Actived by Eu2+, Dy3+ and Nd3+[J]. Opt Mater,2004,27(1):51-55.

    19. [19]

      [19] Fei Q,Chang C K,Mao D L. Luminescent Properties of Sr2MgSi2O7 and Ca2MgSi2O7 Long Lasting Phosphors Activated by Eu2+, Dy3+[J]. J Alloy Compd,2005,390(1/2):133-137.

    20. [20]

      [20] Kang F W,Peng M Y,Xu S H,et al. Broadly Tunable Emission from CaMoO4: Bi Phosphor Based on Locally Modifying the Microenvironment Around Bi3+ Ions[J]. Eur J Inorg Chem,2014,2014(8):1373-1380.

    21. [21]

      [21] Kang F W,Peng M Y. A New Study on the Energy Transfer in the Color-tunable Phosphor CaWO4:Bi[J]. Dalton Trans,2014,43(1):277-284.

    22. [22]

      [22] Li K,Lian H Z,Shang M M,et al. A Novel Greenish Yellow-Orange Red Ba3Y4O9:Bi3+,Eu3+ Phosphor with Efficient Energy Transfer for UV-LEDs[J]. Dalton Trans,2015,44(47):20542-20550.

    23. [23]

      [23] Bindi L,Bonazzi P,Dusek M,et al. Five-dimensional Structure Refinement of Natural Melilite, (Ca1.89Sr0.01Na0.08K0.02)(Mg0.92Al0.08)-(Si1.98Al0.02)O7[J]. Acta Crystallogr B,2001,57(6):739-746.

    24. [24]

      [24] Schaper A K,Schosnig M,Kutoglu A,et al. Transition from the Incommensurately Modulated Structure to the Lock-in Phase in Co-Akermanite[J]. Acta Crystallogr B,2001,57(4):443-448.

    25. [25]

      [25] Dai P P,Zhang X T,Bian L L,et al. Color Tuning of (K1-x,Nax)SrPO4:0.005Eu2+,yTb3+ Blue-emitting Phosphors via Crystal Field Modulation and Energy Transfer[J]. J Mater Chem C,2013,1(30):4570-4576.

    26. [26]

      [26] Peng M Y,Yin X W,Tanner P A,et al. Orderly-Layered Tetravalent Manganese-Doped Strontium Aluminate Sr4Al14O25:Mn4+:An Efficient Red Phosphor for Warm White Light Emitting Diodes[J]. J Am Ceram Soc,2013,96(6):2870-2876.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    3. [3]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    4. [4]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    19. [19]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    20. [20]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

Metrics
  • PDF Downloads(0)
  • Abstract views(312)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return