Citation: JIN Yi, HUANG Xinyu, WU Wenhao, SONG Pengxiang, YANG Cenyu, YAO Ruimin, ZOU Ruqiang. Research Progress on Compatibility of Heat Exchanger and Phase Change Materials[J]. Chinese Journal of Applied Chemistry, ;2016, 33(12): 1366-1374. doi: 10.11944/j.issn.1000-0518.2016.12.160102 shu

Research Progress on Compatibility of Heat Exchanger and Phase Change Materials

  • Corresponding author: ZOU Ruqiang, 
  • Received Date: 10 March 2016
    Available Online: 13 May 2016

    Fund Project:

  • Phase change materials(PCM) are used for thermal energy storage through the large energy released and received during phase change. Owing to the high energy density, PCM can be utilized in building thermal comforting, concentrated solar power and thermal transport and conversion at high temperature. Heat exchangers are used to transfer thermal energy between fluids and play a crucial role in enhancing energy efficiency of thermal energy storage devices which employ phase change materials as the storage unit. To guarantee the performance stability and usage safety, the compatibility between heat exchangers and phase change materials are extensively investigated. Herein, we give a comprehensive literature review on this topic. The presented overall study can be a reference for heat exchanger material selection.
  • 加载中
    1. [1]

      [1] Nejat P,Jomehzadeh F,Taheri M M,et al. A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector(with an Overview of the Top Ten CO2 Emitting Countries)[J]. Renew Sust Energ Rev,2015,43:843-862.

    2. [2]

      [2] Liu C,Li F,Ma L P,et al. Advanced Materials for Energy Storage[J]. Adv Energy Mater,2010,22(8):28-62.

    3. [3]

      [3] Xu J,Wang R Z,Li Y. A Review of Available Technologies for Seasonal Thermal Energy Storage[J]. Sol Energy,2014,103:610-638.

    4. [4]

      [4] Li C,Wang R Z. Building Integrated Energy Storage Opportunities in China[J]. Renew Sust Energ Rev,2012,16(8):6191-6211.

    5. [5]

      [5] Kousksou T,Bruel P,Jamil A,et al. Energy Storage:Applications and Challenges[J]. Sol Energy Mater Sol Cells,2014,120:59-80.

    6. [6]

      [6] Singh S P,Bhat V. Applications of Organic Phase Change Materials for Thermal Comfort in Buildings[J]. Rev Chem Eng,2014,30(5):521-538.

    7. [7]

      [7] Browne M C,Norton B,McCormack S J. Phase Change Materials for Photovoltaic Thermal Management[J]. Renew Sust Energ Rev,2015,47:762-782.

    8. [8]

      [8] Li Q,Flamant G,Yuan X,et al. Compact Heat Exchangers:A Review and Future Applications for a New Generation of High Temperature Solar Receivers[J]. Renew Sust Energ Rev,2011,15(9):4855-4875.

    9. [9]

      [9] Mohammed H A,Bhaskaran G,Shuaib N H,et al. Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A Review[J]. Renew Sust Energ Rev,2011,15(3):1502-1512.

    10. [10]

      [10] Bhutta M M A,Hayat N,Bashir M H,et al. CFD Applications in Various Heat Exchangers Design:A Review[J]. Appl Therm Eng,2012,32:1-12.

    11. [11]

      [11] Shukla R,Sumathy K,Erickson P,et al. Recent Advances in the Solar Water Heating Systems:A Review[J]. Renew Sust Energy Rev,2013,19:173-190.

    12. [12]

      [12] Ho C K,Iverson B D. Review of High-temperature Central Receiver Designs for Concentrating Solar Power[J]. Renew Sust Energy Rev,2014,29:835-846.

    13. [13]

      [13] Abhat A. Low-Temperature Latent-Heat Thermal-Energy Storage-Heat-Storage Materials[J]. Sol Energy,1983,30(4):313-332.

    14. [14]

      [14] CHEN Xiao,ZHANG Renyuan,LI Feng,et al. Fabrication and Research of Protective Coating for Energy Storage Container in Solar Thermal Power Generation[J]. Mater Rev,2009,23(8):48-50(in Chinese).陈枭,张仁元,李风,等. 太阳能热发电中储能容器防护涂层的制备与研究[J]. 材料导报,2009,23(8):48-50.

    15. [15]

      [15] Ryo Fukahori,Takahiro Nomura,Chunyu Zhu,et al. Thermal Analysis of Al-Si Alloys as High-temperature Phase-change Matieral and Their Corrosion Properties with Ceramic Materials[J]. Appl Energ,2016,163:1-8.

    16. [16]

      [16] WEN Hongyan,FAN Xiaoming,LEI Chang. Compatibility between the Molten Mg-15Ca-15Zn Thermal Energy Storage Alloy and Steel Vessel Shell Materials for Phase-transformation Thermal Storage Facility[J]. Spec Cast Nonferrous Alloys,2015,35(6):569-571(in Chinese).文红艳,范晓明,雷昶. 储热合金Mg-15Ca-15Zn与钢质容器的相容性[J]. 特种铸造及有色金属,2015,35(6):569-571.

    17. [17]

      [17] LI Yuanyuan,CHENG Xiaomin. Review on the Low Melting Point Alloys for Thermal Energy Storage and Heat Transfer Applications[J]. Energ Storage Sci and Technol,2013,2(3):189-198(in Chinese).李元元,程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术,2013,2(3):189-198.

    18. [18]

      [18] DING Jing,Wei Xiaolan,Peng Qiang,et al. Mid- and High-temperature Heat Transfer and Thermal Energy Storage Materials[M]. Beijing:Science Press,2013:161-165(in Chinese).丁静,魏小兰,彭强,等. 中高温传热蓄热材料[M]. 北京:科学出版社,2013:161-165.

    19. [19]

      [19] Heine D. Corrosion Behavior of Steels in Contact with Salt Eutectics as Latent-Heat Storage Materials[J]. Heat Recovery Systems & CHP,1987,7(4):389-394.

    20. [20]

      [20] ZHU Jiankun. System Design and Experimental Research on Molten Salt Heat Transfer and Thermal Storage for Concentrating Solar Utilization[D]. Beijing:Beijing University Technology,2006(in Chinese).朱建坤. 太阳能高温熔盐传热蓄热系统设计及实验研究[D]. 北京:北京工业大学,2006.

    21. [21]

      [21] SUN Liping. Experimental Research on Molten Salt Corrosion Property and Optimization[D]. Beijing:Beijing University Technology,2007(in Chinese).孙李平. 太阳能高温熔盐优选及腐蚀特性实验研究[D]. 北京:北京工业大学,2007.

    22. [22]

      [22] Heidenreich G R,Parekh M B. Thermal Energy Storage for Organic Rankine Cycle Solar Dynamic Space Power Systems[C]. 21st Intersociety Energy Conversion Engineering Conference:Advancing Toward Technology Breakout in Energy Conversion,1986,2:791-797.

    23. [23]

      [23] LIAO Min. Preparation and Its Performance for High Temperature Molten Carbonate Salts Materials[D]. Guangzhou:South China University of Technology,2009(in Chinese).廖敏. 高温碳酸熔融盐材料的制备和性能研究[D]. 广州:华南理工大学,2009.

    24. [24]

      [24] LIAO Min,DING Jing,WEI Xiaolan,et al. Preparation and Heat Transfer and Thermal Storage Property of High-temperature Carbonate Molten Salt[J]. Inorg Chem Ind,2008,40(10):15-17(in Chinese).廖敏,丁静,魏小兰,等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业,2008,40(10):15-17.

    25. [25]

      [25] LIAO Min,WEI Xiaolan,DING Jing,et al. Thermophysical Property Study of Carbonate Molten Salt LNK[J]. Acta Energ Sol Sin,2010,31(7):863-867(in Chinese).廖敏,魏小兰,丁静,等. LNK碳酸熔盐热物性能研究[J]. 太阳能学报,2010,31(7):863-867.

    26. [26]

      [26] Singh I B,Sen U. The Effect of Nacl Addition on the Corrosion of Mild-Steel in Nano3 Melt[J]. Corros Sci,1993,34(10):1733-1742.

    27. [27]

      [27] Guillot S,Faik A,Rakhmatullin A,et al. Corrosion Effects Between Molten Salts and Thermal Storage Material for Concentrated Solar Power Plants[J]. Appl Energy,2012,94:174-181.

    28. [28]

      [28] Werner R. Compatibility of Organic Latent-Heat Storage Materials and Plastic Container Materials[J]. Heat Recovery Syst CHP,1987,7(4):383-388.

    29. [29]

      [29] Lázaro A,Zalba B,Bobi M,et al. Experimental Study on Phase Change Materials and Plastics Compatibility[J]. AIChE J,2006,52(2):804-808.

    30. [30]

      [30] Castell n C,Martorell I,Cabeza L F,et al. Compatibility of Plastic with Phase Change Materials(PCM)[J]. Int J Energy Res,2011,35(9):765-771.

    31. [31]

      [31] Ferrer G,Sol A,Barreneche C,et al. Corrosion of Metal Containers for Use in PCM Energy Storage[J]. Renew Energy,2015,76:465-469.

    32. [32]

      [32] Sari A,Kaygusuz K. Some Fatty Acids Used for Latent Heat Storage:Thermal Stability and Corrosion of Metals with Respect to Thermal Cycling[J]. Renew Energy,2003,28:939-948.

    33. [33]

      [33] Oró E,Miró L,Barreneche C,et al. Corrosion of Metal and Polymer Containers for Use in PCM Cold Storage[J]. Appl Energy,2013,109:449-453.

    34. [34]

      [34] Porisini F C. Salt Hydrates Used for Latent-Heat Storage-Corrosion of Metals and Reliability of Thermal Performance[J]. Sol Energy,1988,41(2):193-197.

    35. [35]

      [35] Nagano K,Ogawa K,Mochida T,et al. Performance of Heat Charge/Discharge of Magnesium Nitrate Hexahydrate and Magnesium Chloride Hexahydrate Mixture to a Single Vertical Tube for a Latent Heat Storage System[J]. Appl Therm Eng,2004,24(2/3):209-220.

    36. [36]

      [36] García-Romero A,Delgado A,Urresti A,et al. Corrosion Behaviour of Several Aluminium Alloys in Contact with a Thermal Storage Phase Change Material Based on Glauber's Salt[J]. Corros Sci,2009,51(6):1263-1272.

    37. [37]

      [37] Joseph R D. Corrosion of Aluminum and Aluminum Alloys[M]. Cleveland:ASM International,1999:75-83.

    38. [38]

      [38] Farrell A J,Norton B,Kennedy D M. Corrosive Effects of Salt Hydrate Phase Change Materials Used with Aluminium and Copper[J]. J Mater Process Tech,2006,175(1/2/3):198-205.

    39. [39]

      [39] Cabeza L F,Illa J,Roca J,et al. Middle Term Immersion Corrosion Tests on Metal-salt Hydrate Pairs Used for Latent Heat Storage in the 32 to 36 Degrees C Temperature Range[J]. Mater Corros,2001,52(10):748-754.

    40. [40]

      [40] Cabeza L F,Illa J,Roca J,et al. Immersion Corrosion Tests on Metal-salt Hydrate Pairs Used for Latent Heat Storage in the 32 to 36 Degrees C Temperature Range[J]. Mater Corros,2001,52(2):140-146.

    41. [41]

      [41] Cabeza L F,Roca J,Nogues M,et al. Immersion Corrosion Tests on Metal-salt Hydrate Pairs Used for Latent Heat Storage in the 48 to 58 Degrees C Temperature Range[J]. Mater Corros,2002,53(12):902-907.

    42. [42]

      [42] Cabeza L F,Roca J,Nogues M,et al. Long Term Immersion Corrosion Tests on Metal-PCM Pairs Used for Latent Heat Storage in the 24 to 29 C Temperature Range[J]. Mater Corros,2005,56(1):33-39.

    43. [43]

      [43] Moreno P,Miró L,Solé A,et al. Corrosion of Metal and Metal Alloy Containers in Contact with Phase Change Materials(PCM) for Potential Heating and Cooling Applications[J]. Appl Energy,2014,125:238-245.

    44. [44]

      [44] Lv Y J,Zhou W B,Yang Z J,et al. Characteration and Numerical Simulation on Heat Transfer Performance of Inorganic Phase Change Thermal Storage Devices[J]. Appl Therm Eng,2016,93:788-796.

    45. [45]

      [45] SHENG Qiang,XING Yuming,LUO Heng. Experiment on Thermal Storage Performance of Barium Hydroxide Octahydrate Phase Change Material[J]. J Beijing Univ Aeronaut Astronaut,2014,40(5):635-638(in Chinese).盛强,邢玉明,罗恒. 八水氢氧化钡相变材料储热性能实验[J]. 北京航空航天大学学报,2014,40(5):635-638.

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    11. [11]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    12. [12]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

Metrics
  • PDF Downloads(0)
  • Abstract views(402)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return