Citation: WANG Dongsheng, LI Wentao, YANG Xiaofang, AN Guangyu. Ferrates: Green Oxidants and Coagulants in Water Treatment[J]. Chinese Journal of Applied Chemistry, ;2016, 33(11): 1221-1233. doi: 10.11944/j.issn.1000-0518.2016.11.160337 shu

Ferrates: Green Oxidants and Coagulants in Water Treatment

  • Corresponding author: WANG Dongsheng, 
  • Received Date: 22 August 2016
    Available Online: 21 September 2016

    Fund Project:

  • The rise of emerging contaminants and microorganisms causes the complexity of drinking water quality and brings a gap between peoples demand and water treatment efficiency using conventional treatment reagents and techniques. Ferrate is an effective and multi-functional green water purification material, which shows both good oxidation and coagulation ability without secondary pollution. This paper reviews the removal mechanism of contaminants including heavy metal ions, emerging contaminants and microorganisms by ferrate. At present, the investigation of ferrates oxidation and coagulation cooperative effect is insufficient and the application of ferrates in water treatment has not been fully developed. Therefore, the oxidation and coagulation cooperative effect of ferrates is emphatically discussed to direct the application of ferrates in water treatment. Finally, the prospect of application of ferrates in water treatment is commented.
  • 加载中
    1. [1]

      [1] Susan A,Zachary B,Isha R. Safe Drinking Water for Low-Income Regions[J]. Annu Rev Environ Resour,2015,40:203-231.

    2. [2]

      [2] Schwarzenbach R P,Egli T,Hofstetter T B,et al. Global Water Pollution and Human Health[J]. Annu Rev Environ Resour,2010,35:109-136.

    3. [3]

      [3] Girit B,Dursun D,Olmez-Hanci T,et al. Treatment of Aqueous Bisphenol A Using Nano-Sized Zero-Valent Iron in the Presence of Hydrogen Peroxide and Persulfate Oxidants[J]. Water Sci Technol,2015,71(12):1859-1868.

    4. [4]

      [4] Li S,Zhang G S,Wang P,et al. Microwave-enhanced Mn-Fenton Process for the Removal of BPA in Water[J]. Chem Eng J,2016,294:371-379.

    5. [5]

      [5] Zhang L,Wang W Z,Sun S M,et al. Elimination of BPA Endocrine Disruptor by Magnetic BiOBr@SiO2@Fe3O4 Photocatalyst[J]. Appl Catal B:Environ,2014,148/149:164-169.

    6. [6]

      [6] Gan W,Sharma V K,Zhang X,et al. Investigation of Disinfection Byproducts Formation in Ferrate(Ⅵ) Preoxidation of NOM and Its Model Comounds Followed by Chlorination[J]. J Hazard Mater,2015,292:197-204.

    7. [7]

      [7] Han Q,Wang H J,Dong W Y,et al. Formation and Inhibition of Bromate during Ferrate(Ⅵ)-Ozone Oxidation Process[J]. Sep Purif Technol,2013,118:653-658.

    8. [8]

      [8] Sharma V K,Mishra S K,Ray A K. Kinetics Assessment of the Potassium Ferrate(Ⅵ) Oxidation of Antibacterial Drug Sulfamethoxazole[J]. Chemosphere,2006,62(1):128-134.

    9. [9]

      [9] Sharma V K. Oxidation of Inorganic Contaminants by Ferrates(Ⅵ, Ⅴ, and Ⅳ)-Kinetics and Mechanisms:A Review[J]. J Environ Manage,2011,92(4):1051-1073

    10. [10]

      [10] Jiang J Q,Lloyd B. Progress in the Development and Use of Ferrate(Ⅵ) Salt as an Oxidant and Coagulant for Water and Wastewater Treatment[J]. Water Res,2002,36(6):1397-1408.

    11. [11]

      [11] Bartzatt R,Cano M,Johnson L,et al. Removal of Toxic Metals and Nonmetals from Contaminated Water[J]. J Toxicol Environ Health,1992,35(4):205-210.

    12. [12]

      [12] Sharma V K,Zboril R,Varma R S. Ferrates:Greener Oxidants with Multimodal Action in Water Treatment Technologies[J]. Acc Chem Res,2015,48(2):182-191.

    13. [13]

      [13] Luo Z,Strouse M,Jiang J Q,et al. Methodologies for the Analytical Determination of Ferrate(Ⅵ):A Review[J]. J Environ Sci Health,Part A:Toxic/Hazard Subs Environ Eng,2011,46(5):453-460.

    14. [14]

      [14] Macova Z,Bouzek K,Hives J,et al. Research Progress in the Electrochemical Synthesis of Ferrate(Ⅵ)[J]. Electrochim Acta,2009,54(10):2673-2683.

    15. [15]

      [15] Sharma V K,Klingelh fer G,Nishida T,et al. M ssbauer Spectroscopy:Applications in Chemistry, Biology, and Nanotechnology[M]. Wiley-Interscience:Hoboken,N J,USA,2013:505-520.

    16. [16]

      [16] Jiang J Q. Advances in the Development and Application of Ferrate(Ⅵ) for Water and Wastewater Treatment[J]. J Chem Technol Biotechnol,2014,89(2):165-177.

    17. [17]

      [17] Hoppe M L,Schlemper E O,Murmann R K. Structure of Dipotassium Ferrate(Ⅵ)[J]. Acta Crystallogr Sect B,1982,38(8):2237-2239.

    18. [18]

      [18] Sharma V K. Synthesis,Properties, and Applications in Water and Wastwater Treatment[M]. Am Chem Soc,Washington,DC,2008:189-196

    19. [19]

      [19] Li C,Li X Z,Graham N. A Study of the Preparation and Reactivity of Potassium Ferrate[J]. Chemosphere,2005,61(4):537-543.

    20. [20]

      [20] Ohta T,Kamachi T,Shiota Y,et al. A Theoretical Study of Alcohol Oxidation by Ferrate[J]. J Org Chem,2001,66(12):4122-4131.

    21. [21]

      [21] Lee Y,Kissner Y,von Gunten U. Reaction of Ferrate(Ⅵ) with ABTS and Self-decay of Ferrate(Ⅵ):Kinetics and Mechniams[J]. Environ Sci Technol,2014,48(9):5154-5162.

    22. [22]

      [22] Delaude L,Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferrate(Ⅵ)[J]. J Org Chem,1996,61(18):6360-6370.

    23. [23]

      [23] Yoshizawa K,Kagawa Y. Reaction Pathways for the Oxidation of Methanol to Formaldehyde by an Iron-Oxo Species[J]. J Phys Chem A,2000,104(41):9347-9355.

    24. [24]

      [24] Lee D G,Gai H. Kinetics and Mechanism of the Oxidation of Alcohols by Ferrate Ion[J]. Can J Chem,1993,71(9):1394-1400.

    25. [25]

      [25] Carr J D. In Ferrates; ACS Symposium Series[M]. Am Chem Soc:Washington,DC,2008:189-196.

    26. [26]

      [26] Huang H,Sommerfield D,Dunn B C,et al. Ferrate(Ⅵ) Oxidation of Aqueous Phenol:Kinetics and Mechanism[J]. J Phys Chem A,2001,105(14):3536-3541.

    27. [27]

      [27] Rush J D,Cyr J E,Zhao Z,et al. The Oxidation of Phenol by Ferrate(Ⅵ) and Ferrate(Ⅴ). A Pulse Radiolysis and Stopped Flow Study[J]. Free Radical Res,1995,22(4):349-360.

    28. [28]

      [28] Sharma V K,Luther G W,Millero F J. Mechanisms of Oxidation of Organosulfur Compounds by Ferrate(Ⅵ)[J]. Chemosphere,2011,82(8):1083-1089.

    29. [29]

      [29] Huang H,Sommerfeld D,Dunn B C,et al. Ferrate(Ⅵ) Oxidation of Aniline[J]. J Chem Soc Dalton Trans,2001,8(8):1301-1305.

    30. [30]

      [30] Johnson M D,Hornstein B J,Wischnewsky J. In Ferrates, ACS Symposium Series[M]. American Chemical Society:Washington,DC,2008:177-188.

    31. [31]

      [31] Lim M,Kim M J. Effectiveness of Potassium Ferrate(K2FeO4) for Simultaneous Removal of Heavy Metals and Natural Organic Matters from River Water[J]. Water Air Soil Pollut,2010,211(1):313-322.

    32. [32]

      [32] Prucek R,Tuček J,Kolařík J,et al. Ferrate(Ⅵ)-Prompted Removal of Metals in Aqueous Media:Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides[J]. Environ Sci Technol,2015,49(4):2319-2327.

    33. [33]

      [33] Prucek R,Tuček J,Kolařík J,et al. Ferrate(Ⅵ)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(Ⅲ) Oxide Nanoparticles[J]. Environ Sci Technol,2013,47(7):3283-3292.

    34. [34]

      [34] Lee Y,Um I,Yoon J. Arsenic(Ⅲ) Oxidation by Iron(Ⅵ)(Ferrate) and Subsequent Removal of Arsenic(Ⅴ) by Iron(Ⅲ) Coagulation[J]. Environ Sci Technol,2003,37(24):5750-5756

    35. [35]

      [35] Krasner S W,Mitch W A,McCurry D L,et al. Formation, Precursors, Control, and Occurrence of Nitrosamines in Drinking Water:A Review[J]. Water Res,2013,47(13):4433-4450.

    36. [36]

      [36] Li C,Li X Z,Graham N,et al. The Aqueous Degradation of Bisphenol A and Steroid Estrogens by Ferrate[J]. Water Res,2008,42(1/2):109-120.

    37. [37]

      [37] Yang B,Ying G G,Chen Z F,et al. Ferrate(Ⅵ) Oxidation of Tetrabromobisphenol A in Comparison with Bisphenol A[J]. Water Res,2014,62:211-219.

    38. [38]

      [38] SharmaV K,Mishra S K,Nesnas N. Oxidation of Sulfonamide Antimicrobials by Ferrate(Ⅵ)[FeO42-] [J]. Environ Sci Technol,2006,40(23):7222-7227.

    39. [39]

      [39] Sharma V K,Chen L,Zboril R. Review on High Valent FeⅥ(Ferrate):A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals[J]. ACS Sustainable Chem Eng,2016,4(1):18-34.

    40. [40]

      [40] Kim C,Panditi V R,Gardinali P R,et al. Ferrate Promoted Oxidative Cleavage of Sulfonamides:Kinetics and Product Formation under Acidic Conditions[J]. Chem Eng J,2015,279:307-316.

    41. [41]

      [41] Yates B J,Darlington R,Zboril R,et al. High-Valent Iron-Based Oxidants to Treat Perfluorooctanesulfonate and Perfluorooctanoic Acid in Water[J]. Environ Chem Lett,2014,12(3):413-417.

    42. [42]

      [42] Sharma V K,Kazama F,Jiang Y H,et al. Ferrates(Iron(Ⅵ) and Iron(Ⅴ)) as Environmentally-Friendly Oxidants and Disinfectants[J]. J Water Health,2005,3(1):45-58.

    43. [43]

      [43] Gilbert M B,Waite T D,Hare C. An Investigation of the Applicability of Ferrate Ion for Disinfection[J]. J Am Water Works Assoc,1976,68(9):495-497.

    44. [44]

      [44] Sharma V K. Disinfection Performance of Fe(Ⅵ) in Water and Wastewater:A Review[J]. Water Sci Technol,2007,55(1/2):225-232.

    45. [45]

      [45] Hu L,Page M A,Sigstam T,et al. Inactivation of Bacteriophage MS2 with Potassium Ferrate(Ⅵ)[J]. Environ Sci Technol,2012,46(21):12079-12087.

    46. [46]

      [46] Schink T,Waite T D. Inactivation of f2 Virus with Ferrate(Ⅵ)[J]. Water Res,1980,14(12):1705-1717.

    47. [47]

      [47] Kazama F. Viral Inactivation by Potassium Ferrate[J]. Water Sci Technol,1995,31(5/6):165-168.

    48. [48]

      [48] Sharma V K,Smith J O,Millero F J. Ferrate(Ⅵ) Oxidation of Hydrogen Sulfide[J]. Environ Sci Technol,1997,31(9):2486-2491.

    49. [49]

      [49] Sharma V K,Yngard R A,Cabelli D E,et al. Ferrate(Ⅵ) and Ferrate(Ⅴ) Oxidation of Cyanide, Thiocyanate, and Copper(Ⅰ) Cyanide[J]. Radiat Phys Chem,2008,77(6):761-767.

    50. [50]

      [50] Sharma V K,Cabelli D E. Reduction of Oxyiron(Ⅴ) by Sulfite and Thiosulfate[J]. J Phys Chem A,2009,113(31):8901-8906.

    51. [51]

      [51] Jain A,Sharma V K,Mbuya M S. Removal of Arsenite by Fe(Ⅵ), Fe(Ⅵ)/Fe(Ⅲ), and Fe(Ⅵ)/Al(Ⅲ) Salts:Effect of pH and Anions[J]. J Hazard Mater,2009,169(1/2/3):339-344.

    52. [52]

      [52] Cyr J E,Bielski B H J. The Reduction of Ferrate(Ⅵ) to Ferrate(Ⅴ) by Ascorbate[J]. Free Radical Biol Med,1991,11(2):157-160.

    53. [53]

      [53] Padmaja S,Squadrito G L,Lemercier J N,et al. Rapid Oxidation of DL-Selenomethionine by Peroxynitrite[J]. Free Radical Biol Med,1996,21(3):317-322.

    54. [54]

      [54] Read J F,Bewick S A,Graves C R,et al. The Kinetics and Mechanism of the Oxidation of S-Methyl-L-cysteine, L-Cystine and L-Cysteine by Potassium Ferrate[J]. Inorg Chim Acta,2000,303(2):244-255.

    55. [55]

      [55] De Luca S J,Cantelli M,De Luca M A. Ferrate vs Traditional Coagulants in the Treatment of Combined Industrial Wastes[J]. Water Sci Technol,1992,26(9/10/11):2077-2080.

    56. [56]

      [56] Waite T D,Gray K A. Oxidation and Coagulation of Wastewater Effluent Utilizing Ferrate(Ⅵ) Ion[J]. Stud Environ Sci,1984,23:407-420.

    57. [57]

      [57] QU Jiuhui. Multifunction Water Treatment on the Ferrate and Its Application[J]. China Water Wastewater,1997,13(3):21-24(in Chinese).曲久辉. 高铁酸盐的多功能水处理效果及其应用展望[J]. 中国给水排水,1997,13(3):21-24.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(4)
  • Abstract views(491)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return