Citation: NIE Xiaowei, CHEN Nan, LI Jing, QU Liangti. Progress in Controllable Preparation and Applications of Graphene Fiber Supercapacitors[J]. Chinese Journal of Applied Chemistry, ;2016, 33(11): 1234-1244. doi: 10.11944/j.issn.1000-0518.2016.11.160330 shu

Progress in Controllable Preparation and Applications of Graphene Fiber Supercapacitors

  • Corresponding author: CHEN Nan,  QU Liangti, 
  • Received Date: 19 August 2016
    Available Online: 21 September 2016

    Fund Project:

  • Supercapacitors, also known as electrochemical capacitors, is a green energy storage device. The reaserch of supercapacitors, fundamentally is seeking fully utilizable electrode materials with large specific surface area. As the sp2 hybridized carbon material primitive unit, graphene has a unique two-dimensional structure and excellent physical and chemical characters, and has great potential in the field of supercapacitors, in which research workers increasingly concern about graphene fiber supercapacitors. Based on the one-dimensional graphene fiber self-assembly and assembled together with prepared materials as the electrode material for supercapacitors, this review expounds the progress in controllable preparation, controllable build unique electrode materials with optimized performance for assembling of the high-performance supercapacitor. The development and prospect of related area are discussed.
  • 加载中
    1. [1]

      [1] Geim A K. Graphene:Status and Prospects[J]. Science,2009,324(5934):1530-1534.

    2. [2]

      [2] Cheng H H,Liu J,Zhao Y,et al. Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots[J]. Angew Chem Int Ed,2013,52(40):10482-10486.

    3. [3]

      [3] Xu Z,Gao C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J]. Nat Commun,2011,2:571-579.

    4. [4]

      [4] Dong Z L,Jiang C C,Cheng H H,et al. Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers[J]. Adv Mater,2012,24(14):1856-1861.

    5. [5]

      [5] Cong H P,Ren X C,Wang P,et al. Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers[J]. Sci Rep,2012,2:613-618.

    6. [6]

      [6] Dikin D A,Stankovich S,Zimney E J,et al. Preparation and Characterization of Graphene Oxide Paper[J]. Nature,2007,448(7152):457-460.

    7. [7]

      [7] Li X,Zhang G,Bai X,et al. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films Nature Nanotechnology[J]. Nat Nanotechnol,2008,3(9):538-542.

    8. [8]

      [8] Xu Z,Zhang Y,Li P G,et al. Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores[J]. ACS Nano,2012,6(8):7103-7113.

    9. [9]

      [9] Xu Y X,Sheng K X,Li C,et al. Self-assembled Graphene Hydrogel via a Onestep Hydrothermal Process[J]. ACS Nano,2014,4(7):324-4330.

    10. [10]

      [10] Li Y,Sheng K X,Yuan W J,et al. A High-Performance Flexible Fibre-Shaped Electrochemical Capacitor Based on Electrochemically Reduced Graphene Oxide[J]. Chem Commun,2013,49(3):291-293.

    11. [11]

      [11] Zhu Y,Stoller M D,Cai W,et al. Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets[J]. ACS Nano,2010,4(2):1227-1233.

    12. [12]

      [12] LIU Lan. Preparation and Electrochemistry Performance study of Conducting Polymers Modified Activate Carbon Electrodes[D]. Qingdao:Ocean University of China,2010(in Chinese).刘兰. 导电高分子修饰活性炭电极的制备与电化学性能研究[D]. 青岛:中国海洋大学,2010.

    13. [13]

      [13] NIU Shuzhang. Preparation of Peanut Shell Based Activated Carbon and Its Electrochemical Performance[D]. Tianjin:Tianjin University,2009(in Chinese).牛树章. 花生壳基活性炭的制备及其电化学性能的研究[D]. 天津:天津大学,2009.

    14. [14]

      [14] Ruiz V,Pandolfo A G. Polyfurfiiryl Alcohol Derived Activated Carbons for High Power Electrical Double Layer Capacitors[J]. Electrochim Acta,2010,55(25):7495-7500.

    15. [15]

      [15] Guo H,Wang X,Qian Q,et al. A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano,2009,3(9):2653-2659.

    16. [16]

      [16] WU Hongpeng. Preparation of Graphene and Its Application in Supercapacitor[D]. Beijing:Beijing Jiaotong University,2012(in Chinese).吴鸿鹏. 石墨烯的制备及在超级电容器中的应用[D]. 北京:北京交通大学,2012

    17. [17]

      [17] Jo K,Lee T,Choi H,et al. Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes[J]. Langmuir,2011,27(5):2014-2018.

    18. [18]

      [18] YANG Guangmin. Classification of supercapacitor[J]. Sci Technol Vision,2014,(24):60-60(in Chinese).杨光敏. 超级电容器的分类[J]. 科技视界,2014,(24):60-60.

    19. [19]

      [19] LI Haisheng. Classification and Advantages and Disadvantages of Super Capacitor[J]. Telecom Power Technol,2011,28(6):89-90(in Chinese).李海生. 超级电容器的分类与优缺点分析[J]. 通信电源技术,2011,28(6):89-90.

    20. [20]

      [20] Wang Y H,Bian K,Hu C G,et al. Flexible and Wearable Graphene/Polypyrrole Fibers to Wards Multifunctional Actuator Applications[J]. Electrochem Commun,2013,35(10):49-52.

    21. [21]

      [21] Cheng H H,Hu C G,Zhao Y,et al. Graphene Fiber:A New Material Platform for Unique Applications[J]. NPG Asia Mater,2014,6(7):e113(1)-e113(3).

    22. [22]

      [22] Bae J,Song M,Park Y,et al. A Highly Stretchable, Fiber-Shaped Supercapacitor[J]. Angew Chem Int Ed,2011,50:1683-1687.

    23. [23]

      [23] Zhao Y,Liu J,Hu Y,et al. Highly Compression-tolerant Supercapacitor Based on Polypyrrole-mediated Graphene Foam Electrodes[J]. Adv Mater,2013,25(4):591-595.

    24. [24]

      [24] Yoo J J,Balakrishnan K,Huang J,et al. Ultrathin Planar Graphene Supercapacitors[J]. Nano Lett,2011,11(4):1423-1427.

    25. [25]

      [25] Chen Q,Meng Y N,Hu C G,et al. MnO2-Modified Hierarchical Graphene Fiber Electrochemical Supercapacitor[J]. J Power Sources,2014,247(3):32-39.

    26. [26]

      [26] Ding X,Zhao Y,Hu C,et al. Spinning Fabrication of Graphene/Polypyrrole Composite Fibers for All-Solid-State, Flexible Fibriform Supercapacitors[J]. J Mater Chem A,2014,2(31):12355-12360.

    27. [27]

      [27] Zhao Y,Jiang C C,Hu C G,et al. Large-Scale Spinning Assembly of Neat, Morphology-Defined, Graphene-Based Hollow Fibers[J]. ACS Nano,2013,7(3):2406-2412.

    28. [28]

      [28] Li Y,Sheng K,Yuan W,et al. A High-Performance Flexible Fibre-Shaped Electrochemical Capacitor Based on Electrochemically Reduced Graphene Oxide[J]. Chem Commun,2013,49(3):291-293.

    29. [29]

      [29] Meng Y,Zhao Y,Hu C,et al. All Graphene Core Sheath Microfibers for All Solid State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles[J]. Adv Mater,2013,25(16):2326-2331.

    30. [30]

      [30] Cheng H,Dong Z,Hu C,et al. Textile Electrodes Woven by Carbon Nanotube-Graphene Hybrid Fibers for Flexible Electrochemical Capacitors[J]. Nanoscale,2013,5(8):3428-3434.

    31. [31]

      [31] Huang T Q,Zheng B N,Kou L,et al. Flexible High Performance Wet-Spun Graphene Fiber Supercapacitors[J]. RSC Adv,2013,3(46):23957-23962.

    32. [32]

      [32] Chen X,Zheng G,Cutler J I,et al. In-Wire Conversion of a Metal Nanorod Segment into an Organic Semiconductor[J]. Small,2009,5(13):1527-1530.

    33. [33]

      [33] Gumennik A,Stolyarov A M,Schell B R,et al. All-in-Fiber Chemical Sensing[J]. Adv Mater,2012,24(45):6005-6009.

    34. [34]

      [34] Hu Y,Cheng H,Zhao F,et al. All-in-one Graphene Fiber Supercapacitor[J]. Nanoscale,2014,6(12):64486451.

    35. [35]

      [35] Liang Y,Wang Z,Huang J,et al. Series of In-Fiber Graphene Supercapacitors for Flexible Wearable Devices[J]. J Mater Chem A,2015,3(6):2547-2551.

    36. [36]

      [36] Liu J,Wang Z,Xie X J,et al. A Rationally-Designed Synergetic Polypyrrole/Graphene Bilayer Actuator[J]. J Mater Chem,2012,22(9):4015-4020.

    37. [37]

      [37] Li X,Zhao T,Chen Q,et al. Flexible all Solid-State Supercapacitors Based on Chemical Vapor Deposition Derived Graphene Fibers[J]. Phys Chem Chem Phys,2013,15(41):17752-17757.

    38. [38]

      [38] Chen Q,Meng Y,Hu C,et al. MnO2-Modified Hierarchical Graphene Fiber Electrochemical Supercapacitor[J]. J Power Sources,2014,24(7):32-39.

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    8. [8]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(0)
  • Abstract views(803)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return