Citation: MA Shiyao, DU Hui, GENG Chuang, WANG Yang, PANG Linhan, ZHAO Na, LIU Xiao, GUO Yongtai, QU Jiangying. In situ Synthesis of Nitrogen/Oxygen Co-doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials[J]. Chinese Journal of Applied Chemistry, ;2016, 33(11): 1316-1321. doi: 10.11944/j.issn.1000-0518.2016.11.160047 shu

In situ Synthesis of Nitrogen/Oxygen Co-doped Porous Carbons Derived from Crab Shells and Their Application as Supercapacitor Electrode Materials

  • Corresponding author: QU Jiangying, 
  • Received Date: 27 January 2016
    Available Online: 5 April 2016

    Fund Project:

  • Nitrogen/oxygen co-doped porous carbons were prepared for supercapacitor electrode using waste crab shells as the carbon source and KOH as the activated agent. The effects of the pyrolysis temperature on the yield, the porous structures and the nitrogen/oxygen content of the obtained carbons were investigated with the fixed mass ratio of crab shells and KOH as 5:3. The results show that the specific surface area and pore volume of the as-synthesized carbons are increased, while their nitrogen/oxygen contents are decreased when the pyrolysis temperature is increased from 500 to 700℃. Electrochemical behaviors were determined using cyclic voltammetry and galvanostatic charge-discharge measurements. The results demonstrate that the nitrogen/oxygen content and the porosity of the carbons have important effects on their electrochemical performances. The sample with the pyrolysis temperature fixed at 600℃ exhibits the specific surface area of 612 m2/g, the nitrogen content of 3.53% as well as the oxygen content of 32.8%. Its specific capacitance reaches 310 F/g at the current density of 50 mA/g and exhibits the long-term stability with 95% capacitance retention after 1000 cycles. It is obvious that the porous structure and the nitrogen/oxygen contents of the obtained carbons can be controlled by adjusting the pyrolysis temperature, and their electrochemical performances depend on the synergistic effects of the porosity and the surface properties.
  • 加载中
    1. [1]

      [1] HU Xiaozhou,WANG Jing,TANG Jing. Synthesis of Mixture Salt Activated Porous Carbon from Scaphium Scaphigerum and Its Performance as Supercapacitor Electrode Material[J]. Chinese J Appl Chem,2015,32(5):591-596(in Chinese).呼小洲,王静,唐靖. 混合盐活化胖大海基多孔炭的制备及其超级电容器电极材料性能[J]. 应用化学,2015,32(5):591-596.

    2. [2]

      [2] Liu X C,Li S M,Mi R,et al. Porous Structure Design of Carbon Xerogels for Advanced Supercapacitor[J]. Appl Energy,2015,153(1):32-40.

    3. [3]

      [3] Olivares-Marín M,Fernández-González C,Macías-García A,et al. Preparation of Activated Carbon from Cherry Stones by Chemical Activation with ZnCl2[J]. Appl Surf Sci,2006,252(17):5967-5971.

    4. [4]

      [4] Wang L H,Toyoda M,Inagaki M. Dependence of Electric Double Layer Capacitance of Activated Carbons on the Types of Pores and Their Surface Areas[J]. New Carbon Mater,2008,23(2):111-115.

    5. [5]

      [5] Chmiola J,Yushin G,Gogotsi Y,et al. Anomalous Increase in Carbon Capacitance at Pore Size Below 1 nm[J]. Science,2006,313(5794):1760-1763.

    6. [6]

      [6] WANG Xiaojiao,ZHANG Chuanxiang,XING Baolin. Research Progress in the Nitrogen-containing Porous Carbon Electrode Materials for Supercapacitor[J]. Mater Rev,2011,25(4):24-32(in Chinese).王晓娇,张传祥,邢宝林. 超级电容器用含氮多孔炭电极材料的研究进展[J]. 材料导报,2011,25(4):24-32.

    7. [7]

      [7] Zhang C,Long D,Xing B,et al. The Superior Electrochemical Performance of Oxygen-rich Activated Carbons Prepared from Bituminous Coal[J]. Electrochem Commun,2008,10(11):1809-1811.

    8. [8]

      [8] Verheyen V,Rathbone R,Jagtoyen M,et al. Activated Extrudates by Oxidation and KOH Activation of Bituminous Coal[J]. Carbon,1995,33(6):763-772.

    9. [9]

      [9] Wei L,Sevilla M,Fuertes A B,et al. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-performance Supercapacitor Electrode[J]. Adv Energy Mater,2011,1(3):356-361.

    10. [10]

      [10] White R J,Antonietti M,Titirici M M. Naturally Inspired Nitrogen Doped Porous Carbon[J]. J Mater Chem,2009,19(45):8645-8650.

    11. [11]

      [11] Liu H,Wang X,Cui W,et al. Highly Ordered Mesoporous Carbon Nanofiber Arrays from a Crab Shell Biological Template and Its Application in Supercapacitors and Fuel Cells[J]. J Mater Chem,2010,20:4223-4230.

    12. [12]

      [12] Qu J,Geng C,Lv S Y,et al. Nitrogen, Oxygen and Phosphorus Decorated Porous Carbons Derived from Shrimp Shells for Supercapacitors[J]. Electrochim Acta,2015,176:982-988.

    13. [13]

      [13] Das S,Ganesh E A. Extraction of Chitin Trash Crabs by an Eccentric Method[J]. Curr Res J Biol Sci,2010,2(1):72-75.

    14. [14]

      [14] Wang D W,Li F,Yin L C,et al. Nitrogen-doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogen-induced Redox Transitions[J]. Chem Eur J,2012,18(17):5345-5351.

    15. [15]

      [15] Hulicova-Jurcakova D,Fiset E,Lu G Q,et al. Changes in Surface Chemistry of Carbon Materials upon Electrochemical Measurements and Their Effects on Capacitance in Acidic and Neutral Electrolytes[J]. ChemSusChem,2012,5(11):2188-2199.

    16. [16]

      [16] Gao F,Shao G H,Qu J Y,et al. Tailoring of Porous and Nitrogen-rich Carbons Derived from Hydrochar for High-performance Supercapacitor Electrodes[J]. Electrochim Acta,2015,155:201-208

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    19. [19]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(0)
  • Abstract views(473)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return