Citation: QIAN Jianhua, DONG Qinghua, LI Junhua, LIU Lin, XING Jinjuan. Oxidation of Methanol to Dimethoxymethane over Vanadium Pentoxide/Cerium-Titanium Dioxide with High Selectivity[J]. Chinese Journal of Applied Chemistry, ;2016, 33(11): 1295-1302. doi: 10.11944/j.issn.1000-0518.2016.11.160022 shu

Oxidation of Methanol to Dimethoxymethane over Vanadium Pentoxide/Cerium-Titanium Dioxide with High Selectivity

  • Corresponding author: QIAN Jianhua,  LI Junhua, 
  • Received Date: 14 January 2016
    Available Online: 19 April 2016

    Fund Project:

  • The composite Ce-TiO2 support was prepared through solvothermal treament of Ce(NO3)3 and butyl titanate. A series of V2O5/Ce-TiO2 catalysts with different vanadium loadings were obtained by incipient impregnation with ammonium metavanadate solution. The catalytic properties of V2O5/Ce-TiO2 for selective oxidation of methanol to dimethoxymethane(DMM) were investigated. The V2O5/Ce-TiO2 catalysts were characterized by XRD, UV-Vis, H2-TPR, and NH3-TPD. The results show that the dispersion of vanadium species is improved on the surface of Ce modified TiO2. The interaction between vanadium species and supports is changed. The reduction temperature increases with the increasing Ce content. The Ce content in modified TiO2 does not affect the acidity of the V2O5 supported catalysts, but the acidity of the catalysts decreases with the increasing of V2O5 content. For the catalyst of 10V/1Ce-TiO2(The numbers 10 and 1 represent the mass percentage of V2O5 in the catalyst and molar ratio of Ce and TiO2, respectively), the methanol conversion and DMM selectivity reach 39.6% and 99.9%, respectively, at 160℃.
  • 加载中
    1. [1]

      [1] Zhang Q D,Tang Y S,Yang C H,et al. MnCl2 Modified H4SiW12O40/SiO2 Catalysts for Catalytic Oxidation Dimethyl Ether to Dimethoxymethane[J]. J Mol Catal A,2007,263(1/2):149-155.

    2. [2]

      [2] Li H,Li J P,Xiao F K,et al. One-step Synthesize of Dimethoxymethane from Methanol over Mn/Re/Cu Catalysts[J]. J Fuel Chem Technol,2009;37(5):613-617.

    3. [3]

      [3] Royer S,Sécordel X,Brandhorst M,et al. Amorphous Oxide as a Novel Efficient Catalyst for Direct Selective Oxidation of Methanol to Dimethoxymethane[J]. Chem Commun,2008,7(7):865-867.

    4. [4]

      [4] MU Shifang,SHANG Rujing,WEI Lingchao,et al. Research Progress in Catalyst System for One-step Selective Oxidation of Methanol to Methylal[J]. Mod Chem Ind,2011,31(5):11-15(in Chinese).穆仕芳,尚如静,魏灵朝,等. 甲醇选择氧化一步法制甲缩醛催化体系研究进展[J]. 现代化工,2011,31(5):11-15.

    5. [5]

      [5] Anthony C R,White L M. Selective Electrochemical Oxidation of Methanol to Dimethoxymethane Using Ru/Sn Catalysts[J]. J Mol Catal A,2005,227(1/2):113-117.

    6. [6]

      [6] ZHANG Shenghong,ZHANG Hongpeng,LI Weizhen,et al. Effects of Zirconia Crystallite Phases on the Structures of MoO<em>x/ZrO2 Catalysts and Their Properties in the Selective Oxidation of Methanol[J]. Acta Phys Chim Sin,2010,26(7):1879-1886(in Chinese).张胜红,张鸿鹏,李为臻,等. ZrO2晶相对MoOx/ZrO2催化剂结构及其甲醇选择氧化性能的影响[J]. 物理化学学报,2010,26(7):1879-1886.

    7. [7]

      [7] Fu Y C,Shen J S. Selective Oxidation of Methanol to Dimethoxymethane under Mild Conditions over V2O5/TiO2 with Enhanced Surface Acidity[J]. Chem Commun,2007,21(21):2172-2174.

    8. [8]

      [8] Li H,Li J P,Xiao F K,et al. One-step Synthesis of Dimethoxymethane from Methanol over Mn/Re/Cu Catalysts[J]. J Fuel Chem Technol,2009,37(5):613-617.

    9. [9]

      [9] Fuji K,Nakano S,Fujita E. An Improved Method for Methoxymethylation of Alcohols Under Mild Acidic Conditions[J]. Synthesis,1975,4:276-277.

    10. [10]

      [10] Zhang Y H,Drake I J,Briggs D N,et al. Synthesis of Dimethyl Carbonate and Dimethoxy Methane over Cu-ZSM-5[J]. J Catal,2006,244(2):219-229.

    11. [11]

      [11] XU Chunmei,ZHANG Mingsen. Preparation of Methylal from Methanol and Polyoxymethylene[J]. Petrochem Technol,2008,37(9):896-899(in Chinese).许春梅,张明森. 甲醇与多聚甲醛反应制备甲缩醛[J]. 石油化工,2008,37(9):896-899.

    12. [12]

      [12] Fu Y C,Zhu H Y,Shen J Y. Thermal Decomposition of Dimethoxymethane and Dimethyl Carbonate Catalyzed by Solid Acids and Bases[J]. Thermochim Acta,2005,435(1/2):88-92.

    13. [13]

      [13] Liu J W,Fu Y C,Sun Q,et al. TiO2 Nanotubes Supported V2O5 for the Selective Cxidation of Methanol to Dimethoxymethane[J]. Micro Meso Mater,2008,116(1/2/3):614-621.

    14. [14]

      [14] Kaichev V V,Popova G Y,Chesalov Y A,et al. Selective Oxidation of Methanol to Form Dimethoxymethane and Methyl Formate over a Monolayer V2O5/TiO2 Catalyst[J]. J Catal,2014,311(3):59-70.

    15. [15]

      [15] Fan Z H,Guo H Q,Fang K G,et al. Efficient V2O5/TiO2 Composite Catalysts for Dimethoxymethane Synthesis from Methanol Selective Oxidation[J]. RSC Adv,2015,5(31):24795-24802.

    16. [16]

      [16] Sun Q,Fu Y C,Liu J W,et al. Structural, Acidic and Redox Properties of V2O5-TiO2-SO42- Catalysts[J]. Appl Catal A,2008,334(1/2):26-34.

    17. [17]

      [17] Yuan Y Z,Shido T,Iwasawa Y. The New Catalytic Property of Supported Rhenium Oxides for Selective Oxidation of Methanol to Methylal[J]. Chem Commun,2000,15(46):1421-1422.

    18. [18]

      [18] WU Jianbing,WANG Hui,QIN Zhangfeng,et al. Selective Oxidation of Methanol to Dimethoxymethane over V2O5/TiO2-ZrO2[J]. J Fuel Chem Technol,2011,39(1):64-68(in Chinese).武建兵,王辉,秦张峰,等. V2O5/TiO2-ZrO2 催化剂上甲醇选择氧化制甲缩醛[J]. 燃料化学学报,2011,39(1):64-68.

    19. [19]

      [19] CHEN Wenlong,LIU Haichao. Relationship Between the Structures of Metal Oxide Catalysts and Their Properties in Selective Oxidation of Methanol[J]. Acta Phys Chim Sin,2012,28(10):2315-2326(in Chinese).陈文龙刘海超. 甲醇选择氧化金属氧化物催化剂的结构与其催化性能的关系[J]. 物理化学学报,2012,28(10):2315-2326.

    20. [20]

      [20] Gao X T,Wachs I E. Molecular Engineering of Supported Vanadium Oxide Catalysts Through Support Modification[J]. Topics Catal,2002,18(3/4):243-250

    21. [21]

      [21] Goodrow A,Bell A T. A Theoretical Investigation of the Selective Oxidation of Methanol to Formaldehyde on Isolated Vanadate Species Supported on Titania[J]. J Phys Chem C,2008,112(34):13204-13214

    22. [22]

      [22] Lee S M,Chong S. Promotional Effect of Vanadium on the Selective Catalytic Oxidationof NH3 to N2 over Ce/V/TiO2 Catalyst[J]. Appl Catal B,2015,163(163):30-39.

    23. [23]

      [23] GUO Heqin,LI Debao,CHEN Congbiao,et al. One-Step Oxidation of Methanol to Dimethoxymethane on V2O5/CeO2 Catalyst[J]. Chinese J Catal,2012,33(5):813-818(in Chinese).郭荷芹,李德宝,陈从标,等. V2O5/CeO2催化剂上甲醇氧化一步法合成二甲氧基甲烷[J]. 催化学报,2012,33(5):813-818.

    24. [24]

      [24] Eraiah R K,Madras G. Metal-metal Charge Transfer and Interfacial Charge Transfer Mechanism for the Visible Light Photocatalytic Activity of Cerium and Nitrogen Co-doped TiO2[J]. J Sol Gel Sci Technol,2014,71(2):193-203.

    25. [25]

      [25] Lu X L,Qin Z F,Dong M,et al. Selective Oxidation of Methanol to Dimethoxymethane over Acid-modified V2O5/TiO2 Catalysts[J]. Fuel,2011,90(4):1335-1339.

    26. [26]

      [26] Berndt H,Martin A,Br ckner A,et al. Structureand Catalytic Properties of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde[J]. J Catal,2000,191(2):384-400.

    27. [27]

      [27] Peńa M L,Dejoz A,Fornés V,et al. V-containing MCM-41 and MCM-48 Catalysts for the Selective Oxidation of Propane in Gasphase[J]. Appl Catal A,2001,209(1/2):155-64.

    28. [28]

      [28] Zhao H Y,Bennici S,Shen J,et al. Influence of the Host Oxide of Sulfated-titania Catalysts on Partial Cxidation Methanol Reaction[J]. Appl Catal A,2010,385(1/2):224-231.

    29. [29]

      [29] Liu H C,Iglesia E. Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo12-nPO40 Keggin Structures[J]. J Phys Chem B,2003,107(39):10840-10847.

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(567)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return