Citation: LIANG Xitong, PAN Wei, CHEN Kunfeng, XUE Dongfeng. Advance in Research and Development of Novel Supercapacitors[J]. Chinese Journal of Applied Chemistry, ;2016, 33(8): 867-875. doi: 10.11944/j.issn.1000-0518.2016.08.160174 shu

Advance in Research and Development of Novel Supercapacitors

  • Corresponding author: XUE Dongfeng, 
  • Received Date: 25 April 2016
    Available Online: 12 June 2016

    Fund Project:

  • Traditional supercapacitors have low energy density, which in most cases hinders their further practical applications, therefore, people more focus on studies of the structure-composition-property relationship of electrode materials towards high performance supercapacitors during present research and development of electrochemical energy storage devices. This article summarizes the history of research and development of novel supercapacitors, as well as their challenges and strategies, with the aim to find novel supercapacitor systems via searching for high efficient electrode materials and electrolytes. Novel electrode materials and redox electrolytes are thus particularly emphasized herein, for example, some promising electrode materials of colloidal ion supercapacitor systems have shown some advantages compared to those ex-situ prepared electrode materials, which indicates high electrochemical reactivity existing in the colloidal state of constituent transitional and rare earth metal cations. Furthermore, we also introduce novel lithium-ion supercapacitors as some promising research and development directions. On the basis of the current status of research and development of supercapacitors, it is highly expected to combine the advantages of both battery electrode materials and supercapacitor electrode materials towards the so-called supercapattery or supercabattery, which may be dominant in the field of future electrochemical energy storage devices.>
  • 加载中
    1. [1]

      [1] Simon P,Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater,2008,7(11):845-854.

    2. [2]

      [2] Pandolfo A G,Hollenkamp A F. Carbon Properties and Their Role in Supercapacitors[J]. J Power Sources,2006,157(1):11-27.

    3. [3]

      [3] Gonz lez A,Goikolea E,Barrena J A,et al. Review on Supercapacitors:Technologies and Materials[J]. Renew Sust Energ Rev,2016,58(2016):1189-1206.

    4. [4]

      [4] Miller J R,Simon P. Electrochemical Capacitors for Energy Management[J]. Science,2008,321(5889):651-652.

    5. [5]

      [5] LI Hong,LYU Yingchun. A Review on Electrochemical Energy Storage[J]. J Electrochem,2015,21(5):412-424(in Chinese).李泓,吕迎春. 电化学储能基本问题综述[J]. 电化学,2015,21(5):412-424.

    6. [6]

      [6] Chang S K,Zainal Z,Tan K B,et al. Recent Development in Spinel Cobaltites for Supercapacitor Application[J]. Ceram Int,2015,41(1):1-14.

    7. [7]

      [7] Becker H. E. Low Voltage Electrolytic Capacitor:US42304254A[P],1957-07-23.

    8. [8]

      [8] Boos D I. Electrolytic Capacitor Having Carbon Paste Electrodes:US3536963DA[P],1970-10-27.

    9. [9]

      [9] Conway B E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M]. New York:Kluwer Academic/Plenum Publishers,1999:264-265.

    10. [10]

      [10] LIU Haijing,XIA Yongyao. Research Progress of Hybrid Supercapacitor[J]. Prog Chem,2011,23(2/3):595-604(in Chinese).刘海晶,夏永姚. 混合型超级电容器的研究进展[J]. 化学进展,2011,23(2/3):595-604.

    11. [11]

      [11] Kötz R,Carlen M. Principles and Applications of Electrochemical Capacitors[J]. Electrochim Acta,2000,45(15/16):2483-2498.

    12. [12]

      [12] Supercapacitors Can Destroy the Lithium-ion Battery Market[Z/OL].[2014-06-24].http://www.idtechex.com/research/articles/supercapacitors-can-destroy-the-lithium-ion-battery-market-00006649.asp.

    13. [13]

      [13] Wang G P,Zhang L,Zhang J J. A Review of Electrode Materials for Electrochemical Supercapacitors[J]. Chem Soc Rev,2012,41(2):797-828.

    14. [14]

      [14] XUE Dongfeng,LYU Pai,LI Keyan. Structure Design of Supercapacitor Electrode Materials[J]. J Henan Univ,2012,42(5):512-5239(in Chinese).薛冬峰,吕派,李克艳. 超级电容器电极材料的结构设计[J]. 河南大学学报,2012,42(5):512-523.

    15. [15]

      [15] CHEN Kunfeng,XUE Dongfeng. Colloidal Ionic Supercapacitors[J]. J Electrochem,2015,21(6):534-542(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器[J]. 电化学,2015,21(6):534-542.

    16. [16]

      [16] CHEN Kunfeng,YANG Yangyang,CHEN Xu,et al. Study of Transition Metal-Based Materal for Eletrochemical Energy Storage[J]. J Henan Univ,2014,44(4):398-415(in Chinese).陈昆峰,杨阳阳,陈旭,等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报,2014,44(4):398-415.

    17. [17]

      [17] Chen K F,Xue D F. Rare Earth and Transitional Metal Colloidal Supercapacitors[J]. Sci China Tech Sci,2015,58(11):1768-1778.

    18. [18]

      [18] Chen X,Chen K,Wang H,et al. Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J]. Cryst Eng Comm,2014,16(29):6707-6715.

    19. [19]

      [19] Chen X,Chen K F,Wang H,et al. Functionality of Fe(NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J]. Electrochim Acta,2014,147:216-224.

    20. [20]

      [20] Chen K,Yang Y Y,Li K Y,et al. CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J]. ACS Sustainable Chem Eng,2014,2(3):440-444.

    21. [21]

      [21] Chen K F,Song S Y,Xue D F. An Ionic Aqueous Pseudocapacitor System:Electroactive Ions in Both Salt-Electrode and Redox-Electrolyte[J]. RSC Adv,2014,4(44):23338-23343.

    22. [22]

      [22] Chen K F,Xue D F,Komarneni S. Colloidal Pseudocapacitor: Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J]. J Power Sources,2015,279:365-371.

    23. [23]

      [23] Chen K F,Song S Y,Li K Y,et al. Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance: Crystallization Transformation Investigation of CuCl2 Electrodes[J]. Cryst Eng Comm,2013,15(47):10367-10373.

    24. [24]

      [24] Chen K F,Xue D F. Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J]. Cryst Eng Comm,2014,16(21):4610-4618.

    25. [25]

      [25] Chen K F,Xue D F. Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce(NO3)3 Can Be Designed as Excellent Pseudocapacitor Electrode[J]. J Colloid Interface Sci,2014,416:172-176. [26 Chen K F,Xue D F. YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J]. J Colloid Interface Sci,2014,424(18):84-89.

    26. [26]

      [27] Chen K F,Xue D F. Formation of Electroactive Colloids via in-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J]. J Colloid Interface Sci,2014,430:265-270.

    27. [27]

      [28] CHEN Kunfeng,XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese J Appl Chem,2016,33(1):18-24(in Chinese).陈昆峰,薛冬峰. 胶体离子超级电容器的比容量评价[J]. 应用化学,2016,33(1):18-24.

    28. [28]

      [29] Akinwolemiwa B,Peng C,Chen G Z. Redox Electrolytes in Supercapacitors[J]. J Electrochem Soc,2015,162(5):A5054-A5059.

    29. [29]

      [30] Mai L Q,Minhas-Khan A,Tian X,et al. Synergistic Interaction Between Redox-Active Electrolyte and Binder-Free Functionalized Carbon for Ultrahigh Supercapacitor Performance[J]. Nat Commun,2013,4(1):2923-2929.

    30. [30]

      [31] Yu H Y,Wu J H,Fan L Q,et al. An Efficient Redox-Mediated Organic Electrolyte for High-Energy Supercapacitor[J]. J Power Sources,2014,248:1123-1126.

    31. [31]

      [32] Wu J H,Yu H J,Fan L Q,et al. A Simple and High-Effective Electrolyte Mediated with P-Phenylenediamine for Supercapacitor[J]. J Mater Chem,2012,22(36):19025-19030.

    32. [32]

      [33] Yu H J,Fan L Q,Wu J H,et al. Redox-Active Alkaline Electrolyte for Carbon-Based Supercapacitor with Pseudocapacitive Performance and Excellent Cyclability[J]. RSC Adv,2012,2(17):6736-6740.

    33. [33]

      [34] Yu H J,Wu J H,Fan L Q,et al. Improvement of the Performance for Quasisolid-State Supercapacitor by Using PVA KOH KI Polymer Gel Electrolyte[J]. Electrochim Acta,2011,56(20):6881-6886.

    34. [34]

      [35] Tian Y,Yan J,Xue R,et al. Capacitive Properties of Activated Carbon in K4Fe(CN)6[J]. J Electrochem Soc,2011,158(7):A818-A821.

    35. [35]

      [36] Galiński M,Lewandowski A,Stpniak I. Ionic Liquids as Electrolytes[J]. Electrochim Acta,2006,51(26):5567-5580.

    36. [36]

      [37] Chen G Z. Perception of Supercapacitor and Supercapattery[C]//Electrochemical Capacitors:Fundamentals to Applications,220th ECS Meeting,Massachusetts,Boston:2011.

    37. [37]

      [38] Sivakkumar S,Pandolfo A G. Evaluation of Lithium-Ion Capacitors Assembled with Pre-Lithiated Graphite Anode and Activated Carbon Cathode[J]. Electrochim Acta,2012,65:280-287.

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    6. [6]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    9. [9]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    19. [19]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    20. [20]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

Metrics
  • PDF Downloads(0)
  • Abstract views(826)
  • HTML views(291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return