Citation: ZENG He, SHI Yan, LI Heming, WANG Chen, WANG Haiyan. Effect of Aluminium Oxide and Phosphorus Modification on Structure and Hydrodesulfurization Performance of Unsupported Catalysts[J]. Chinese Journal of Applied Chemistry, ;2016, 33(8): 951-959. doi: 10.11944/j.issn.1000-0518.2016.08.150425 shu

Effect of Aluminium Oxide and Phosphorus Modification on Structure and Hydrodesulfurization Performance of Unsupported Catalysts

  • Corresponding author: WANG Haiyan, 
  • Received Date: 1 December 2015
    Available Online: 4 March 2016

    Fund Project:

  • Unsupported Ni-Mo hydrodesulfurization catalysts were prepared by a coprecipitation method and characterized by X-ray diffraction(XRD), nitrogen physisorption measurement(BET), infrared spectroscopy(Py-IR, FI-IR), H2-temperaure programmed reduction(H2-TPR), temperature-programmed desorption of NH3(NH3-TPD), Laser Raman spectroscopy(LRS) and gas chromatography analysis(GC-PFPD) tests. The effects of Al2O3 and phosphorus addition on the structure of the catalysts were studied. The results indicate that the addition of Al2O3 greatly increases the pore diameter, specific surface area, the amount of the L acid sites and also promotes the formation of B acid sites. Addition of phosphorus leads to the formation of the Al-P-O structure instead of the NiAl2O4 structure, and weakens the interaction between active phase and Al2O3. The amount of tetrahedral Mo species decreases while the anount of octahedral Mo species increases. The catalysts has a longer service life. The catalyst acidity is changed from strong to weak by adding phosphorus. The hydrodesulfurization rate is increased from 94% to 99.8%. At 280 ℃, hydrogen pressure of 4 MPa, liquid hourly space velocity(LHSV) of 1.5 h-1 and hydrogen-to-oil volume ratio of 500, 4-methyldibenzothiophene, 4,6-dimethyldibenzothiophene and 2,4,6-trimethyldibenzothiophene catalytic cracking are depthly removed in fluid catalytic cracking diesel oil; the sulphur concentration is decreased from 3950 μg/g to 7.9 μg/g.
  • 加载中
    1. [1]

      [1] Plantenga F L,Cefortain R,Eusbouts S,et al. A Hydroprocessing Catalysts with Breakthrough Acfivity[J]. Stud Surf Sci Catal,2003,145(8):407-410.

    2. [2]

      [2] LI He,YIN Changlong,ZHAO Leiyan,et al. Progresses in Unsupported Hydrotreating Catalysts[J]. Petrochem Technol,2013,42(7):811-817(in Chinese).李贺,殷长龙,赵蕾艳,等. 非负载型加氢精制催化剂的研究进展[J]. 石油化工,2013,42(7):811-817.

    3. [3]

      [3] Bocarando J,Huirache-Acun R,Bensch W,et al, Unsupported Ni-Mo-W Sulphide HDS Catalysts with the Varying Nickel Voncentration[J]. Appl Catal A:Gen,2009,363(2):45-51.

    4. [4]

      [4] Yoosuk B,Kim J H,Song C S,et al. Highly Active MoS2, CoMoS2 and NiMoS2 Unsupported Catalysts Prepared by Hydrothermal Synthesis for Hydrodesulfurization of 4,6-Dimethyldibenzothiophene[J]. Catal Today,2008,130(1):14-23.

    5. [5]

      [5] Eijsbouts S,Mayo W,Fujita K. Unsupported Transition Metal Sulfide Catalysts:From Fundamentals to Industrial Application[J]. Appl Catal,A:Gen,2007,322(6):58-66.

    6. [6]

      [6] Mahdavi V,Peyrovi M,Islami M,et al. Synthesis of Higher Alcohols from Syngas over Cu-Co2O3/ZnO-Al2O3 Catalyst[J]. Appl Catal,A:Gen,2005,281(1):259-265.

    7. [7]

      [7] LIU Huan,YIN Changlong,ZHAO Leiyan,et al. Hydrothermal Synthesis of Ni-Mo Unsupported Catalyst and Their Catalytic Performance[J]. Pet Process Petrochem,2013,44(9):19-23(in Chinese).刘欢,殷长龙,赵蕾艳,等. 水热法合成Ni-Mo非负载型催化剂及催化加氢性能[J]. 石油炼制与化工,2013,44(9):19-23.

    8. [8]

      [8] Slavik K. Metallic Sulphide Catalysts, Processes for Synthesising Said Catalysts and Use Thereof:USP 6 562752[P],2003-5-13.

    9. [9]

      [9] Sun M Y,Bürgi T,Cattaneo R,et al. TPS, XPS, QEXAFS, and XANES Investigation of the Sulfidation of NiW/Al2O3-F Catalysts[J]. J Catal,2001,201(2):258-269.

    10. [10]

      [10] Heirem J M,Reyes J,Roquero P,et al. New Hydrotreating Ni-Mo Catalysts Supported on MCM-41 Modified with Phosphorus[J]. Micropor Mesopor Mater,2005,83(1/3):283-291.

    11. [11]

      [11] YANG Jun,CHEN Manying,REN Jie. Effect of Mo, W Addition on Performance of Ni/Al2O3 Catalyst for Hydrodeoxygenation[J]. Chem Eng Prog,2005,24(12):1386-1389(in Chinese).杨俊,陈满英,任杰. Mo,W对Ni/Al 2O3催化剂加氢脱氧性能的影响[J]. 化工进展,2005,24(12):1386-1389.

    12. [12]

      [12] Bendezú S,Cid R,Fierro J L G,et al. Thiophene Hydrodesulfurization on Sulfided Ni, W and NiW/USY Zeolite Catalysts: Effect of the Preparation Method[J]. Appl Catal,A,2000,197(197):47-60.

    13. [13]

      [13] Bataillea F,Lemberton J L,Michauda P,et al. Alkyldibenzothiophenes Hydrodesulfurization-promoter Effect, Reactivity, and Reaction Mechanism[J]. J Catal,2000,191(9):409-422.

    14. [14]

      [14] HU Dawei,YANG Qinghe,SUN Shuling,et al. Effect of Phosphirus on the Performance and Active Component Structure of MoCoNi/Al2O3 Catalyst[J]. Pet Process Petrochem,2011,42(5):1-4(in Chinese).胡大为,杨清河,孙淑玲,等. 磷对Mo-W催化剂性能及活性结构的影响[J]. 石油炼制与化工,2011,42(5):1-4.

    15. [15]

      [15] Sigurdson S,Sundammurthy V,Dalai A K,et al. Phosphorus Promoted Trimetallic NiMoW/Al2O3, Sulfide Catalysts in Gas Oil Hydrotreating[J]. Catal,A:Chem,2008,291(1/2):30-37.

    16. [16]

      [16] LI He,YIN Changlong,BAI Zhenjiang,et al. Progresses in Phosphorous Hydrotreating Catalysts[J]. Petrochem Technol,2013,42(12):1398-1404(in Chinese).李贺,殷长龙,白振江,等. 含磷加氢精制催化剂的研究进展[J]. 石油化工,2013,42(12):1398-1404.

    17. [17]

      [17] SUN Yanyao,LI Fengyan,LI Qingjie,et al. Effect of Phosphorus Content on the Performance of MoP/ γ-Al2O3 Catalyst[J]. Pet Process Petrochem,2008,39(8):46-49(in Chinese).孙艳药,李凤艳,李庆杰,等. 磷含量对负载型磷化钼催化剂性能的影响[J]. 石油炼制与化工,2008,39(8):46-49.

    18. [18]

      [18] Michaud P,Lemberton J L,Perot G. Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzo-thiophene:Effect of an Acid Component on the Activity of a Sulfided NiMo on Alumina Catalyst[J]. Appl Catal,A:Gen,1998,169(9):343-353.

    19. [19]

      [19] Rana M S,Ancheyta J,Rayo P,et al. Effect of Alumina Preparation on Hydrodemetallization and Hydrodesulfurization of Maya Crude[J]. Catal Today,2004,98(98):151-160.

    20. [20]

      [20] Pablo T M,Ramirez J,Cuevas R. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo Catalysts Supported on B2O3-Al2O3[J]. Catal Today,2005,107(44):551-558.

    21. [21]

      [21] YANG Xiyao. Technology of Temperature Programmed Analysis II[J]. Petrochem Technol,2002,31(1):63-73(in Chinese).杨锡尧. 程序升温分析技术(下)[J]. 石油化工,2002,31(1):63-73.

    22. [22]

      [22] Ma X L,Sakanishi K,Mochida I. Hydrodesulfunzation Reactivities of Various Sulfur Compounds in Diesel Fuel[J]. Ind Eng Chem Res,1994,33(2):218-222.

    23. [23]

      [23] LI Dadong. Hydrotreating Technology and Engineering[M]. Beijing:China Petrochemical Press,2004:648-650(in Chinese).李大东. 加氢处理工艺与工程[M]. 北京:中国石化出版社,2004:648-650.

    24. [24]

      [24] Wang W Y,Yang Y Q,Bao J G,et al. Characterization and Catalytic Properties of Ni-Mo-B Amorphous Catalysts for Phenol Hydrodeoxygenation[J]. Catal Commun,2009,11(2):100-105.

    25. [25]

      [25] Qian E W,Abe S,Kagawa Y,et al. Hydrodenitrogenation of Porphyrin on Ni-Mo Based Catalysts[J]. Chinese J Catal,2013,34(1):152-158.

    26. [26]

      [26] Erdem B,Erdem S,Öksüzoğlu R M,et al. High-surface-area SBA-15-SO3H with Enhanced Catalytic Activity by the Addition of Poly(ethylene glycol)[J]. J Por Mater,2013,20(5):1041-1049.

    27. [27]

      [27] Marazri J A,Rajagopal S,Miranda R. Bifunctional Mechanism of Pyridine Hydrodenitrogenation[J]. J Catal,1995,156(2):255-264.

    28. [28]

      [28] Vakros J,Lycourghiotis A,Voyiatzis G A,et al. CoMo/Al2O3-SiO2 Catalysts Prepared by Co-equilibrium Deposition Filtration:Characterization and Catalytic Behavior for the Hydrodesulphurization of Thiophene[J]. Appl Catal B:Environ,2010,96(3/4):496-507.

    29. [29]

      [29] ZHOU Tongna,YIN Hailiang,LIU Yunqi. Effect of Phosphorus Content on the Active Phase Structure of Ni-Mo/γ-Al2O3 Catalyst[J]. J Fuel Chem Technol,2010,38(1):70-74(in Chinese).周同娜,尹海亮,柳云骐. 磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响[J]. 燃料化学学报,2010,38(1):70-74.

    30. [30]

      [30] YANG Zhanlin,PENG Shaozhong,LIU Xueling,et al. Effects of Phosphorus Modification on Structure and Properties of Mo-Ni/γ-Al2O3 Catalyst[J]. Petrochem Technol,2007,36(8):784-788(in Chinese).杨占林,彭绍忠,刘雪玲,等. P改性对Mo-Ni/γ-Al2O3催化剂结构和性质的影响[J]. 石油化工,2007,36(8):784-788.

    31. [31]

      [31] CAO Guangwei,LUO Xihui,LIU Zhenhua,et al. Preparation and Characterization of Hydrotreating Catalysts I.Preparation of MoNiP/Al2O3 and Effect of Promoters[J]. Chinese J Catal,2001,22(2):143-147(in Chinese).曹光伟,罗锡辉,刘振华,等. 加氢处理催化剂的制备与表征I MoNiP/Al2O3催化剂的制备及助剂的作用[J]. 催化学报,2001,22(2):143-147.

    32. [32]

      [32] YUAN Hui,XU Guangtong,QI Herima,et al. Application of Laser Raman Spectroscopy in the Co-Mo/Al2O3 Hydrogenation Catalyst[J]. Spectrosc Spectr Anal,2013,34(2):435-438(in Chinese).袁蕙,徐广通,齐和日玛,等. 激光拉曼光谱在加氢脱硫催化剂Co-Mo/Al2O3中的应用研究[J]. 光谱学与光谱分析,2013,34(2):435-438.

    33. [33]

      [33] Bergwerff J A,Jansen M,Leliveld B G,et al. Influence of the Preparation Method on the Hydrotreating Activity of MoS2/Al2O3 Extrudates:A Raman Microspectroscopy Study on the Genesis of the Active Phase[J]. J Catal,2006,243(2):292-302.

    34. [34]

      [34] Van de Water L G A,Bergwerff J A,Leliveld B G,et al. Insights into the Preparation of Supported Catalysts:A Spatially Resolved Raman and UV-Vis Spectroscopic Study into the Drying Process of CoMo/γ-Al2O3 Catalyst Bodies[J]. J Phys Chem B,2005,109(30):14513-14522.

    35. [35]

      [35] Al-Megren H A,González-Cortés S L,Xiao Tiancun,et al. A Comparative Study of the Catalytic Performance of Co-Mo and Co(Ni)-W Carbide Catalysts in the Hydrodenitrogenation(HDN) Reaction of Pyridine[J]. Appl Catal A:Gen,2007,329(10):36-45.

    36. [36]

      [36] ZHAO Leiyan,YIN Changlong,LIU Huan,et al. Study on Hydrodesulfurization Process of Diesel on Unsupported Catalyst[J]. Pet Process Petrochem,2014,44(10):39-43(in Chinese).赵蕾艳,殷长龙,刘欢,等. 非负载型催化剂上柴油深度加氢脱硫工艺条件研究[J]. 石油炼制与化工,2014,44(10):39-43.

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    19. [19]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return