Citation: ZHAO Shiduo, LI Fang, LI Qiming, LIANG Zhihua. Preparation of USY Zeolite Supported Cobalt Boride Amorphous Alloy Catalysts and Its Application in Catalytic Hydrogen Production via Hydrolysis of Sodium Borohydride[J]. Chinese Journal of Applied Chemistry, ;2016, 33(6): 655-660. doi: 10.11944/j.issn.1000-0518.2016.06.150327 shu

Preparation of USY Zeolite Supported Cobalt Boride Amorphous Alloy Catalysts and Its Application in Catalytic Hydrogen Production via Hydrolysis of Sodium Borohydride

  • Corresponding author: LI Qiming, 
  • Received Date: 6 September 2015
    Available Online: 13 November 2015

    Fund Project:

  • USY zeolite supported cobalt boride amorphous alloy catalysts(CoB/USY) were prepared via a combined impregnation and chemical reduction method. Their catalytic activities were investigated in hydrogen production from the hydrolysis of NaBH4. XRD characterization indicates that CoB active components supported by USY zeolite have excellent amorphous structure. Micro-morphology of CoB/USY supported catalysts and powdered CoB were checked using SEM. SEM images show that the amorphous CoB are well dispersed onto USY surface which brings relatively high dispersions of CoB species. In the hydrogen generation from NaBH4 hydrolysis, CoB/USY supported catalyst exhibits much higher catalytic activity compared with powdered CoB catalyst. The hydrogen generation rate of CoB/USY supported catalysts reaches about 1.5 L/(min·g), when the temperature is 30℃. The calculated apparent activation energy for NaBH4 hydrolysis is 65.9 kJ/mol based on CoB/USY supported catalysts which is obviously lower than that of powdered CoB catalyst(72.1 kJ/mol).
  • 加载中
    1. [1]

      [1] Wang X F,Sun S R,Huang Z L,et al.Preparation and Catalytic Activity of PVP-protected Au/Ni Bimetallic Nanoparticlesfor Hydrogen Generation from Hydrolysis of Basic NaBH4 Solution[J].Int J Hydrogen Energy,2014,39(2):905-916.

    2. [2]

      [2] PANG Meili,WU Chuan,WU Feng,et al.Study on Promotive Hydrolysis of Sodium Borohydride by Nickel Acetate[J].South China Normal Univ(Nat Sci Edn),2009,A01:88-89(in Chinese).庞美丽,吴川,吴锋,等.醋酸镍促进硼氢化钠水解制氢的研究[J].华南师范大学学报(自然科学版),2009,A01:88-89.

    3. [3]

      [3] Chen Y H,Pan C Y.Effect of Various Co-B Catalyst Synthesis Conditions on Catalyst Surface Morphology and NaBH4 Hydrolysis Reaction Kinetic Parameters[J].Int J Hydrogen Energy,2014,39(4):1648-1663.

    4. [4]

      [4] Tuan T N,Yi Y,Lee J K,et al.Fe-B Catalyst Fabricated by Hybrid Capacitive Adsorption chemical Reduction Method and Its Application for Hydrogenproduction from NaBH4 Solution[J].Catal Today,2013,216:240-245.

    5. [5]

      [5] Liu C H,Chen B H,Hsueh C L,et al.Preparation of Magnetic Cobalt-based Catalyst for Hydrogen Generation from Alkaline NaBH4 Solution[J].Appl Catal B,2009,91(1/2):368-379.

    6. [6]

      [6] XIAO Hui,LI Yong,OU Yuanxian.Design of Hydrogen Generation Systems for Fuel Cells by Using Hydrolysis of Sodium Borohydride[J].East China Electric Power,2009,4(37):657-660(in Chinese).肖慧,李勇,欧元贤.基于硼氢化钠制氢燃料电池供氢系统设计[J].华东电力,2009,4(47):657-660.

    7. [7]

      [7] Fernandes V R,Pinto A M F R,Rangel C M.Hydrogen Production from Sodium Borohydride in Methanol-water Mixtures[J].Int J Hydrogen Energy,2010,35(18):9862-9868.

    8. [8]

      [8] Zahmakiran M,Ozkar S.Zeolite-Confined Ruthenium (0) Nanoclusters Catalyst:Record Catalytic Activity,Reusability,and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride[J].Langmuir,2009,25(5):2667-2678.

    9. [9]

      [9] Chen Y,Kim H.Preparation and Application of Sodium Borohydride Composites for Portable Hydrogen Production[J].Energy,2010,35(2):960-963.

    10. [10]

      [10] Chen Y,Kim H.Ni/Ag/silica Nanocomposite Catalysts for Hydrogen Generation from Hydrolysis of NaBH4 Solution[J].Mater Lett,2008,62(8/9):1451-1454.

    11. [11]

      [11] Prozorov T,Wang J,Ebner A D,et al.Sonochemical Doping of Ti-catalyzed Sodium Aluminum Hydride[J].J Alloy Compd,2006,419(1/2):162-71.

    12. [12]

      [12] Çakanyıldıırım Ç,GürüM.Supported CoCl2 Catalyst for NaBH4 Dehydrogenation[J].Renew Energy,2010,35(4):839-844.

    13. [13]

      [13] Larichev Y V,Netskina O V,Komova O V,et al.Comparative XPS Study of Rh/Al2O3 and Rh/TiO2 as Catalysts for NaBH4 Hydrolysis[J].Int J Hydrogen Energy,2010,35(13):6501-6507.

    14. [14]

      [14] Brown H C,Brown C A.New,Highly Active Metal Catalysis for the Hydrolysis of Borohydride[J].J Am Chem Soc,1962,84(8):1493-1495.

    15. [15]

      [15] Wu Z,Ge S.Facile Synthesis of a Co-B Nanoparticle Catalyst for Efficient Hydrogen Generation via Borohydride Hydrolysis[J].Catal Commun,2011,13(1):40-43.

    16. [16]

      [16] Patel N,Fernandes R,Edla R,et al.Superior Hydrogen Production Rate by Catalytic Hydrolysis of Ammonia Borane Using Co-B Nanoparticles Supported over Mesoporous Silica Particles[J].Catal Commun,2012,23(21):39-42.

    17. [17]

      [17] Patel N,Fernandes R,Gupta S,et al.Co-B Catalyst Supported over Mesoporous Silica for Hydrogen Production by Catalytic Hydrolysis of Ammonia Borane:A Study on Influence of Pore Structure[J].Appl Catal B,2013,140(141):125-132.

    18. [18]

      [18] Liu W,Cai H,Lu P,et al.Polymer Hydrogel Supported Pd-Ni-B Nanoclusters as Robust Catalysts for Hydrogen Production from Hydrolysis of Sodium Borohydride[J].Int J Hydrogen Energy,2013,38(22):9206-9216.

    19. [19]

      [19] Shan X,Du J,Cheng F,et al.Carbon-supported Ni3B Nanoparticles as Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane[J].Int J Hydrogen Energy,2009,34(13):8785-8791.

    20. [20]

      [20] YU Xiaofei,Bao Xinjia,LI Qiming,et al. Preparation of Al2O3 Supported CoB Amorphous Alloy Catalysts and Its Application in Hydrogen Generation[J].Inorg Chem Ind,2005,47(1):59-61(in Chinese).于晓飞,鲍新侠,李其明,等.CoB/Al2O3非晶态合金催化剂的制备及在催化制氢中的应用[J].无机盐工业,2005,47(1):59-61.

  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(4)
  • Abstract views(512)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return