Citation: SUN Yang, ZHANG Hongming, LYU Jinlong, WANG Xianhong, WANG Fosong. Ultraviolet-Thermal Double Cured Anti-corrosion Coating Based on Nano-dispersed Conducting Polyaniline[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 524-532. doi: 10.11944/j.issn.1000-0518.2016.05.160100 shu

Ultraviolet-Thermal Double Cured Anti-corrosion Coating Based on Nano-dispersed Conducting Polyaniline

  • Corresponding author: WANG Xianhong, 
  • Received Date: 9 March 2016
    Available Online: 31 March 2016

    Fund Project:

  • Conducting polyaniline(ES) was prepared using acidic phosphate(HPAA) as dopant of emeraldine base(EB), which can be dispersed in nanoscale in the polyurethane or polyurethane acrylates based matrix, subsequently, ultraviolet-thermal double cured polyaniline anti-corrosion coating without any heavy metals was prepared. The anti-corrosion layer was obtained by ultraviolet light curing in 3~5 s and subsequent thermal curing at 80 ℃ in 1~3 min. Particle size of ES increases with increasing mass fraction of ES in the coating matrix, meanwhile, the aggregation of ES molecules is enhanced. This is because ES is not miscible in polyurethane or polyurethane acrylates in the coating system. The particle size of ES can be controlled between 80 nm and 750 nm, it is ca. 80~119 nm when the mass fraction of the ES in the coating is 1.0%, and is increased to 500~750 nm when mass fraction of ES is 5.0%. The increase of particle size of ES is accompanied by the increase of porosity of anti-corrosion coating, leading to poorer anti-corrosion performance. The absolute impedance at 0.1 Hz(|Z|0.1 Hz) of 1.0 % ES anti-corrosion coating protected mild steel can maintain 1.0×108 Ω·cm2 after 2160 h immersion in 3.5% NaCl solution, while that from UV curing coating protected mild steel is 1.0×107 Ω·cm2,indicating better anti-corrosion performance of this double cured coating. The double cured anti-corrosion coating does not show any red rust and blister after 500 h cross scratch neutral salt spray test, while the rust is observed in the UV-cured anti-corrosion coating, though the rusted frontier around the scratch is still less than 1 mm.
  • 加载中
    1. [1]

      [1] LIU Cuixian,YU Yaguo,CHANG Yunzhen,et al. Studies on Preparation and Electrochemical Properties of Electrochromic Conductive Polyaniline Solid Supercapacitor[J]. Acta Polym Sin,2016,(3):352-359(in Chinese).刘翠仙,余雅国,常云珍,等. 电致变色型导电聚苯胺固态超级电容器的构建与性能研究[J]. 高分子学报,2016,(3):352-359.

    2. [2]

      [2] ZHANG Shuying,WEN Liuqing,WU Kezhong. Capacitive Properties of Polyaniline Electrodes Doped with Quaternary Ammonium Salts[J]. Chinese J Appl Chem,2013,30(8):951-956(in Chinese).张淑英,温柳青,武克忠. 季铵盐掺杂聚苯胺电极的电容性能[J]. 应用化学,2013,30(8):951-956.

    3. [3]

      [3] SHANG Xiuli,SUO Longning,FENG Wencheng,et al. Preparation of Polyaniline/polysulfone Composite Material and Their Super-capacitive Performance[J]. Chinese J Appl Chem,2013,30(9):1060-1064(in Chinese).尚秀丽,索陇宁,冯文成,等. 聚苯胺/聚砜复合材料的制备及其超级电容性能[J]. 应用化学,2013,30(9):1060-1064.

    4. [4]

      [4] JU Hongyan,FU Daguang,ZHAN Lei,et al. Influence of Humidity on Ammonia Sensibility of Polyaniline[J]. Acta Polym Sin,2014,(1):156~163(in Chinese).鞠洪岩,付大光,詹磊,等. 湿度对聚苯胺氨气传感器性能影响的研究[J]. 高分子学报,2014,(1):156-163.

    5. [5]

      [5] ZU Xihong,ZHANG Zheng,JIANG Xuemei,et al. Preparation of High-density Polyaniline Nanowire Array and Its Application in UV Photodetector[J]. Acta Polym Sin,2015,(3):312-318(in Chinese).俎喜红,张政,蒋雪梅,等. 高密度聚苯胺纳米线阵列的制备及在紫外探测器中的应用研究[J]. 高分子学报,2015,(3):312-318.

    6. [6]

      [6] ZHANG Chun,ZHANG Hongming,LI Yingping,et al. Preparation and Anti-corrosion Property of Polyaniline Waterborne Coatings[J]. Chinese J Appl Chem,2012,29(5):504-509(in Chinese).张春,张红明,李应平,等. 聚苯胺水性涂料的制备及其防腐性能[J]. 应用化学,2012,29(5):504-509.

    7. [7]

      [7] Deberry D W. Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating[J]. J Electrochem Soc,1985,132(5):1022-1026.

    8. [8]

      [8] Epstein A J,Smallfield J A O,Guan H,et al. Corrosion Protection of Aluminum and Aluminum Alloys by Polyanilines:A Potentiodynamic and Photoelectron Spectroscopy Study[J]. Synth Met,1999,102(1/2/3):1374-1376.

    9. [9]

      [9] Chen Y,Wang X H,Li J,et al. Long-term Anticorrosion Behaviour of Polyaniline on Mild Steel[J]. Corros Sci,2007,49(7):3052-3063.

    10. [10]

      [10] Li Y P,Zhang H M,Wang X H,et al. Role of Dissolved Oxygen Diffusion in Coating Defect Protection by Emeraldine Base[J]. Synth Met,2011,161(21/22):2312-2317.

    11. [11]

      [11] Li Y P,Zhang H M,Wang X H,et al. Growth Kinetics of Oxide Films at the Polyaniline/mild Steel Interface[J]. Corr Sci,2011,53(12):4044-4049.

    12. [12]

      [12] Wessling B. Passivation of Metals by Coating with Polyaniline:Corrosion Potential Shift and Morphological Changes[J]. Adv Mater,1994,6(3):226-228.

    13. [13]

      [13] Wessling B. Intrinsically Conductive Polymer in the Form of a Dispersible Solid, Its Manufacture and Its Use:US,5567355[P]. 1996-10-22.

    14. [14]

      [14] Wessling B. Dispersions of Intrinsically Conductive Polymers:US,8344062[P]. 2010-06-03.

    15. [15]

      [15] SUN Yang,ZHANG Hongming,LV Jinlong,et al. Studies on Ultraviolet Cured Anti-corrosion Coatings Based on Nano-dispersed Conducting Polyaniline[J]. Acta Polym Sin,2016,(1):105-110(in Chinese).孙杨,张红明,吕金龙,等. 基于可分散聚苯胺的紫外光固化防腐涂料的研究[J]. 高分子学报,2016,(1):105-110.

    16. [16]

      [16] Paul R K,Vijayanathan V,Pillai C K S. Melt/solution Processable Conducting Polyaniline:Doping Studies with a Novel Phosphoric Acid Ester[J]. Synth Met,1999,104(3):189-195.

    17. [17]

      [17] Park J H,Lee G D,Nishikata A,Tsuru T. Anticorrosive Behavior of Hydroxyapatite as an Environmentally Friendly Pigment[J]. Corros Sci,2002,44(5):1087-1095.

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    12. [12]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(1)
  • Abstract views(462)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return