Citation: LIU Si, WEN Zhenhao, YANG Daqiang, ZHU Xuedong. Application of HF Modified Pt/ZSM-5 Catalyst in Benzene Methylation with Methanol[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 571-576. doi: 10.11944/j.issn.1000-0518.2016.05.150418 shu

Application of HF Modified Pt/ZSM-5 Catalyst in Benzene Methylation with Methanol

  • Corresponding author: ZHU Xuedong, 
  • Received Date: 30 November 2015
    Available Online: 4 March 2016

    Fund Project:

  • Hydrofloride modified Pt/ZSM-5 catalysts were studied and applied in benzene alkylation with methanol. The effects of acidity and pore structures of the catalysts were studied by NH3-TPD and N2 adsorption. The results show that the acidity and the amount of acidic sites of Pt/ZSM-5 are increased by HF modification and the catalytic performance in benzene methylation with methanol is also enhanced. The selectivity of toluene and xylene can reach to 92.20% when 3%HF-0.2%Pt/ZSM-5 catalyst is used in benzene methylation with methanol. When the loading of HF is more than 6%, partially removed aluminum and silicon from the zeolite framework will block the pores of zeolite resulting in decreasing diffusions of reactants and products, and eventually reducing catalytic performance of zeolites. The calculated activation energy of benzene methylation with methanol in HF modified Pt/ZSM-5 catalyst is 118 kJ/mol.
  • 加载中
    1. [1]

      [1] ZHANG Zhiping,ZHAO Yan,WU Hongyu,et al. Shape-Selective Alkylation of Toluene with Methanol over Modified Nano-scale HZSM-5 Zeolite[J]. Chinese J Catal,2011,32(7):1280-1286(in Chinese).张志萍,赵岩,吴宏宇,等. 改性纳米HZSM-5催化剂上甲苯与甲醇的烷基化反应[J]. 催化学报,2011,32(7):1280-1286.

    2. [2]

      [2] ZOU Wei,YANG Deqin,ZHU Zhirong,et al. Methylation of Toluene with Methanol over Metal Oxide-Modified HZSM-5 Catalysts[J]. Chinese J Catal,2005,26(6):470-474(in Chinese).邹薇,杨德琴,朱志荣,等. 金属氧化物改性的HZSM-5上甲苯与甲醇的烷基化反应[J]. 催化学报,2005,26(6):470-474.

    3. [3]

      [3] REN Guangcheng,WEN Zhenhao,MEI Yuan,et al. Application of Modified ZSM-11 in Benzene Alkylation with Methanol[J]. Petrol Process Petrochem,2015,46(5):56-60(in Chinese).任广成,闻振浩,梅园,等. ZSM-11分子筛改性及其在苯、甲醇烷基化反应中的应用[J]. 石油炼制与化工,2015,46(5):56-60.

    4. [4]

      [4] WANG Ge,WANG Chuxia,YU Chunmei. Excess Production Output in China Benzene Market and Its Problems Concerned[J]. Chem Ind,2010,28(6):28-31(in Chinese).王革,王楚厦,于春梅. 我国纯苯市场产能井喷式扩张存隐忧[J]. 化学工业,2010,28(6):28-31.

    5. [5]

      [5] MI Duo. The Pure Benzene Market Survey in 2015[J]. Chem Ind,2015,33(6):32-34(in Chinese).米多. 2015年纯苯市场调查[J]. 化学工业,2015,33(6):32-34.

    6. [6]

      [6] HU Huimin. Methylation of Benzene with Methanol over a Series of ZSM-5 Catalyst[D]. Changsha:Hu'nan Normal University,2007(in Chinese).胡慧敏. ZSM-5系列分子筛催化剂上苯与甲醇的烷基化反应研究[D]. 长沙:湖南师范大学,2007.

    7. [7]

      [7] WANG Yubo,WANG Yuemei,GONG Yanfang,et al. Study on Methylation Reaction of Benzene and Methanol with HZSM-5 Molecular Sieve Catalyst[J]. Technol Econom Petrochem,2014,30(4):30-35(in Chinese).王雨勃,王月梅,龚燕芳,等. HZSM-5分子筛催化苯和甲醇甲基化反应研究[J]. 石油化工技术与经济,2014,30(4):30-35.

    8. [8]

      [8] LU Lu,ZHANG Huizhen,ZHU Xuedong. Synthesis of Hierarchical ZSM-5 and Its Application in Benzene Alkylation with Methanol[J]. Acta Petrol Sin,2012,28(S1):111-115(in Chinese).陆璐,张会贞,朱学栋. 多级孔ZSM-5分子筛的合成及催化苯、甲醇烷基化反应的研究[J]. 石油学报(石油加工),2012,28(S1):111-115.

    9. [9]

      [9] Zhang H Z,Zhu X D,Gao Y Y,et al. Synthesis of Hierarchically Porous ZSM-5 by Solvent-Evaporation Route[J]. Adv Mater Res,2011,311/312/313:540-544.

    10. [10]

      [10] Deng W,He X,Zhang C,et al. Promoting Xylene Production in Benzene Methylation Using Hierarchically Porous ZSM-5 Derived from a Modified Dry-gel Route[J]. Chinese J Chem Eng,2014,22(8):921-929.

    11. [11]

      [11] Hu H,Lyu J,Cen J,et al. Promoting Effects of MgO and Pd Modification on the Catalytic Performance of Hierarchical Porous ZSM-5 for Catalyzing Benzene Alkylation with Methanol[J]. RSC Adv,2015,5(77):63044-63049.

    12. [12]

      [12] Aboul-Gheit A K,Aboul-Enein A A,Awadallah A E,et al. Para-xylene Maximization.Part Ⅷ:Promotion of H-ZSM-5 Zeolite by Pt and HF Doping for Use as Catalysts in Toluene Alkylation with Methanol[J]. Chinese J Catal,2010,31(9/10):1209-1216.

    13. [13]

      [13] ZHANG Chao. Investigation of Catalyst Modifications and Reaction Characteristics for Benzene Methylation with Methanol[D]. Shanghai:East China University of Science and Technology,2013(in Chinese).张超. 苯、甲醇烷基化催化剂改性及反应特性的研究[D]. 上海:华东理工大学,2013.

    14. [14]

      [14] Zhao Y,Wu H,Tan W,et al. Effect of Metal Modification of HZSM-5 on Catalyst Stability in the Shape-selective Methylation of Toluene[J]. Catal Today,2010,156(1/2):69-73.

    15. [15]

      [15] Zhao Y,Tan W,Wu H,et al. Effect of Pt on Stability of Nano-scale ZSM-5 Catalyst for Toluene Alkylation with Methanol into P-xylene[J]. Catal Today,2011,160(1):179-183.

    16. [16]

      [16] Hu H,Zhang Q,Cen J,et al. High Suppression of the Formation of Ethylbenzene in Benzene Alkylation with Methanol over ZSM-5 Catalyst Modified by Platinum[J]. Catal Commun,2014,57:129-133.

    17. [17]

      [17] Hu H,Zhang Q,Cen J,et al. Catalytic Activity of Pt Modified Hierarchical ZSM-5 Catalysts in Benzene Alkylation with Methanol[J]. Catal Lett,2014,145(2):715-722.

    18. [18]

      [18] Van der Mynsbrugge J,Visur M,Olsbye U,et al. Methylation of Benzene by Methanol:Single-site Kinetics over H-ZSM-5 and H-beta Zeolite Catalysts[J]. J Catal,2012,292:201-212.

  • 加载中
    1. [1]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    9. [9]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    10. [10]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    11. [11]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Xin-Lou YangJieying HuHao ZhongQia-Chun LinZhiqing LinLai-Hon ChungJun He . Building metal-thiolate sites and forming heterojunction in Hf- and Zr-based thiol-dense frameworks towards stable integrated photocatalyst for hydrogen evolution. Chinese Chemical Letters, 2025, 36(7): 110120-. doi: 10.1016/j.cclet.2024.110120

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    19. [19]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

Metrics
  • PDF Downloads(0)
  • Abstract views(504)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return