Citation: LI Ersha, CHEN Bin, FENG Pengyuan, DENG Ruiping, PENG Zeping. Glucose-Assisted Synthesis and Characterization of Lead Telluride Nanorods[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 591-598. doi: 10.11944/j.issn.1000-0518.2016.05.150417 shu

Glucose-Assisted Synthesis and Characterization of Lead Telluride Nanorods

  • Corresponding author: PENG Zeping, 
  • Received Date: 27 November 2015
    Available Online: 10 March 2016

    Fund Project:

  • Lead telluride nanorods were successfully synthesized by a simple glucose-assisted solvothermal method. The structure characteristics of these as-prepared samples were studied by X-ray diffraction pattern(XRD), field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM) and energy dispersive spectrometer(EDS). The results show that the products are PbTe with a cubic structure. The diameter and length of PbTe nanorods obtained are 50 and 500 nm, respectively. Some reaction factors influencing the formation of PbTe nanorods were systematically investigated. The morphology of the obtained products can be controlled by changing the amount of glucose, the reaction time, the reaction temperature and the amount of polyvinyl pyrrolidone(PVP). The mechanism for the formation of PbTe nanorods is discussed.
  • 加载中
    1. [1]

      [1] Snyder G J,Toberer E S. Complex Thermoelectric Materials[J]. Nat Mater,2008,7(2):105-114.

    2. [2]

      [2] Rowe D M. CRC Handbook of Thermoelectrics[M]. CRC Press,1995:7-18.

    3. [3]

      [3] Hsu K F,Loo S,Guo F,et al. Cubic AgPbmSbTe2+m:Bulk Thermoelectric Materials with High Figure of Merit[J]. Science,2004,303(5659):818-821.

    4. [4]

      [4] Fardy M,Hochbaum A I,Goldberger J,et al. Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires[J]. Adv Mater,2007,19(19):3047-3051.

    5. [5]

      [5] Heremans J P,Thrush C M,Morelli D T. Thermopower Enhancement in PbTe with Pb Precipitates[J]. J Appl Phys,2005,98(6):0637031-6.

    6. [6]

      [6] H Sargent E. Infrared Quantum Dots[J]. Adv Mater,2005,17(5):515-522.

    7. [7]

      [7] Wise F W. Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement[J]. Acc Chem Res,2000,33(11):773-780.

    8. [8]

      [8] Feit Z,Kostyk D,Woods R,et al. Single-Mode Molecular Beam Epitaxy Grown PbEuSeTe/PbTe Buried-Heterostructure Diode Lasers for CO2 High-Resolution Spectroscopy[J]. Appl Phys Lett,1991,58(4):343-345.

    9. [9]

      [9] Mcdonald S A,Konstantatos G,Zhang S,et al. Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics[J]. Nat Mater,2005,4(2):138-142.

    10. [10]

      [10] Springholz G,Schwarzl T,Aigle M,et al. 4.8 μm Vertical Emitting PbTe Quantum-Well Lasers Based on High-Finesse EuTe/Pb1-xEuxTe Microcavities[J]. Appl Phys Lett,2000,76(14):1807-1809.

    11. [11]

      [11] Jin R,Chen G,Pei J,et al. Facile Solvothermal Synthesis and Growth Mechanism of Flower-like PbTe Dendrites Assisted by Cyclodextrin[J]. Cryst Eng Comm,2012,14(6):2327-2332.

    12. [12]

      [12] Murphy J E,Beard M C,Norman A G,et al. PbTe Colloidal Nanocrystals:Synthesis, Characterization, and Multiple Exciton Generation[J]. J Am Chem Soc,2006,128(10):3241-3247.

    13. [13]

      [13] Ni Y,Zhang Y,Hong J. Potentiostatic Electrodeposition Route for Quick Synthesis of Featherlike PbTe Dendrites:Influencing Factors and Shape Evolution[J]. Cryst Growth Des,2011,11(6):2142-2148.

    14. [14]

      [14] Ding Y S,Shen X F,Gomez S,et al. Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures[J]. Adv Funct Mater,2006,16(4):549-555.

    15. [15]

      [15] Wang Y,Cai K,Yao X. Facile Synthesis of PbTe Nanoparticles and Thin Films in Alkaline Aqueous Solution at Room Temperature[J]. J Solid State Chem,2009,182(12):3383-3386.

    16. [16]

      [16] Tamilselvan V,Kumar R R,Rao K N. Growth and Characterization of Micro and Nanostructures of Lead Telluride(PbTe) by Thermal Evaporation Method[J]. Mater Lett,2013,96:162-165.

    17. [17]

      [17] Zhu T,Chen X,Meng X,et al. Anisotropic Growth of Cubic PbTe Nanoparticles to Nanosheets:Controlled Synthesis and Growth Mechanisms[J]. Cryst Growth Des,2010,10(8):3727-3731.

    18. [18]

      [18] Roh J W,Jang S Y,Kang J,et al. Size-Dependent Thermal Conductivity of Individual Single-Crystalline PbTe Nanowires[J]. Appl Phys Lett,2010,96(10):1031011-3.

    19. [19]

      [19] Hu J,Chen Z,Jiang H,et al. Rectangular or Square, Tapered, and Single-crystal PbTe Nanotubes[J]. J Mater Chem,2009,19(19):3063-3068.

    20. [20]

      [20] Ziqubu N,Ramasamy K,Rajasekhar P V,et al. Simple Route to Dots and Rods of PbTe Nanocrystals[J]. Chem Mater,2010,22(13):3817-3819.

    21. [21]

      [21] Zhou J,Chen Z,Sun Z. Hydrothermal Synthesis and Thermoelectric Transport Properties of PbTe Nanocubes[J]. Mater Res Bull,2015,61:404-408.

    22. [22]

      [22] Tai G,Guo W,Zhang Z. Hydrothermal Synthesis and Thermoelectric Transport Properties of Uniform Single-crystalline Pearl-necklace-shaped PbTe Nanowires[J]. Cryst Growth Des,2008,8(8):2906-2911.

    23. [23]

      [23] Yang H,Finefrock S W,Albarracin Caballero J D,et al. Environmentally Benign Synthesis of Ultrathin Metal Telluride Nanowires[J]. J Am Chem Soc,2014,136(29):10242-10245.

    24. [24]

      [24] Banerjee S,Loza K,Meyer-Zaika W,et al. Structural Evolution of Silver Nanoparticles During Wet-Chemical Synthesis[J]. Chem Mater,2014,26(2):951-957.

    25. [25]

      [25] Jin R,Chen G,Yan C,et al. Glucose Assisted Synthesis and Growth Mechanism of Hierarchical Antimony Chalcogenides[J]. Cryst Eng Comm,2012,14(24):8547-8553.

    26. [26]

      [26] Tong G,Du F,Xiang L,et al. Generalized Green Synthesis and Formation Mechanism of Sponge-like ferrite Micro-polyhedra with Tunable Structure and Composition[J]. Nanoscale,2014,6(2):778-787.

    27. [27]

      [27] Burda C,Chen X,Narayanan R,et al. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem Rev,2005,105(4):1025-1102.

    28. [28]

      [28] Tao A R,Habas S,Yang P. Shape Control of Colloidal Metal Nanocrystals[J]. Small,2008,4(3):310-325.

    29. [29]

      [29] Moon G D,Ko S,Xia Y,et al. Chemical Transformations in Ultrathin Chalcogenide Nanowires[J]. ACS Nano,2010,4(4):2307-2319.

    30. [30]

      [30] Sun Y,Xia Y. Large-scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-seeding, Polyol Process[J]. Adv Mater,2002,14(11):833-837.

    31. [31]

      [31] Liu Z,Li S,Yang Y,et al. Shape-Controlled Synthesis and Growth Mechanism of One-Dimensional Nanostructures of Trigonal Tellurium[J]. New J Chem,2003,27(12):1748-1752.

    32. [32]

      [32] Xie Q,Dai Z,Huang W,et al. Large-Scale Synthesis and Growth Mechanism of Single-Crystal Se Nanobelts[J]. Cryst Growth Des,2006,6(6):1514-1517.

    33. [33]

      [33] Liang H W,Liu S,Wu Q S,et al. An Efficient Templating Approach for Synthesis of Highly Uniform CdTe and PbTe Nanowires[J]. Inorg Chem,2009,48(11):4927-4933.

    34. [34]

      [34] Tai G A,Zhou B,Guo W. Structural Characterization and Thermoelectric Transport Properties of Uniform Single-crystalline Lead Telluride Nanowires[J]. J Phys Chem C,2008,112(30):11314-11318.

    35. [35]

      [35] Xi G,Wang C,Wang X,et al. Te/Carbon and Se/Carbon Nanocables:Size-controlled in situ Hydrothermal Synthesis and Applications in Preparing Metal M/Carbon Nanocables(M=Tellurides and Selenides)[J]. J Phys Chem C,2008,112(4):965-971.

    36. [36]

      [36] Lu W,Fang J,Stokes K L,et al. Shape Evolution and Self Assembly of Monodisperse PbTe Nanocrystals[J]. J Am Chem Soc,2004,126(38):11798-11799.

    37. [37]

      [37] Jin R,Chen G,Wang Q,et al. PbTe Hierarchical Nanostructures:Solvothermal Synthesis, Growth Mechanism and Their Electrical Conductivities[J]. Cryst Eng Comm,2011,13(6):2106-2113.

    38. [38]

      [38] He J,Mao S,Zhang S,et al. Preparation and Electrochemical Property of PbTe Nanorods[J]. Mater Sci Semicond Process,2009,12(6):217-223.

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    12. [12]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    18. [18]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

Metrics
  • PDF Downloads(0)
  • Abstract views(320)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return