Citation: HUANG Xiaomei, DENG Xiang. Fluorescent Quenching Method for the Detection of 2,4,6-Trinitrophenol Using Riboflavin[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 606-610. doi: 10.11944/j.issn.1000-0518.2016.05.150367 shu

Fluorescent Quenching Method for the Detection of 2,4,6-Trinitrophenol Using Riboflavin

  • Corresponding author: HUANG Xiaomei, 
  • Received Date: 19 October 2015
    Available Online: 12 January 2016

    Fund Project:

  • A novel method for the determination of 2,4,6-trinitrophenol has been developed based on fluorescent quenching of riboflavin by 2,4,6-trinitrophenol(TNP) in aqueous solutions. The proposed fluorescent quenching method for TNP detection at pH=6.2 using 0.2 mol/L phosphate(NaH2PO4-Na2HPO4) as buffer solution responses within 1 min and with a broad linear relationship from 2.5 to 1000 μmol/L(r=0.9938). The limit of detection for TNP is 0.55 μmol/L. When 5.00 and 20.00 μmol/L TNP is added to different water samples, the recovery ranges from 98.2% to 103.5%. Furthermore, this method is simple, selective, and with wide linear range. Therefore, it can be applied in the determination of 2,4,6-trinitrophenol in real samples.
  • 加载中
    1. [1]

      [1] Ma Y,Li H,Peng S,et al. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Anal Chem,2012,84(19):8415-8421.

    2. [2]

      [2] Babaee S,Beiraghi A. Extraction and High Performance Liquid Chromatography-Ultra Violet Determination of Some Explosives in Water Samples[J]. Anal Chim Acta,2010,662(1):9-13.

    3. [3]

      [3] Dey N,Samanta S K,Bhattacharya S. Selective and Efficient Detection of Nitro-aromatic Explosives in Multiple Media Including Water, Micelles, Organogel, and Solid Support[J]. ACS Appl Mater Interfaces,2013,5(17):8394-8400.

    4. [4]

      [4] Conway R A,Ross R D. Waste Water. In:Hand Book of Industrial Waste Disposal[M]. New York:Educational Publishing Inc,1980:582.

    5. [5]

      [5] Bhalla V,Gupta A,Kumar M,et al. Self-assembled Pentacenequinone Derivative for Trace Detection of Picric Acid[J]. ACS Appl Mater Interfaces,2013,5(3):672-679.

    6. [6]

      [6] Pramanik S,Bhalla V,Kumar M. Mercury Assisted Fluorescent Supramolecular Assembly of Hexaphenylbenzene Derivative for Femtogram Detection of Picric Acid[J]. Anal Chim Acta,2013,793(2):99-106.

    7. [7]

      [7] Ma Y X,Li H,Peng S,et al. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Anal Chem,2012,84(19):8415-8421.

    8. [8]

      [8] Chen J C,Shih J L,Liu C H,et al. Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-run Approach[J]. Anal Chem,2006,78(11):3752-3757.

    9. [9]

      [9] Chen P C,Sukcharoenchoke S,Ryu K,et al. 2,4,6-Trinitrotoluene(TNT) Chemical Sensing based on Aligned Single-walled Carbon Nanotubes and ZnO Nanowires[J]. Adv Mater,2010,22(17):1900-1904.

    10. [10]

      [10] Peng Y,Zhang A J,Dong M,et al. A Colorimetric and Fluorescent Chemosensor for the Detection of an Explosive-2,4,6-Trinitrophenol(TNP)[J]. Chem Commun,2011,47(15):4505-4507.

    11. [11]

      [11] Li X G,Liao Y Z,Huang M R,et al. Ultra-sensitive Chemosensors for Fe(Ⅲ) and Explosives based on Highly Fluorescent Oligofluoranthene[J]. Chem Sci,2013,4(5):1970-1978.

    12. [12]

      [12] Samanta D,Mukherjee P S. Pt6 Nanoscopic Cages with an Organometallic Backbone as Sensors for Picric Acid[J]. Dalton Trans,2013,42(48):16784-16795.

    13. [13]

      [13] Ko H,Chang S,Tsukruk V V. Porous Substrates for Label-free Molecular Level Detection of Nonresonant Organic Molecules[J]. ACS Nano,2009,3(1):181-188.

    14. [14]

      [14] Mu R,Shi H,Yuan Y,et al. Fast Separation and Quantification Method for Nitroguanidine and 2,4-Dinitroanisole by Ultrafast Liquid Chromatography Tandem Mass Spectrometry[J]. Anal Chem,2012,84(7):3427-3432.

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    10. [10]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    17. [17]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

Metrics
  • PDF Downloads(1)
  • Abstract views(341)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return