Citation: CHEN Hongrong, WU Ya'nan, CHEN Shiyan, MA Peihua, NI Xinlong. “Naked-eye” and Fluorescence “Turn-on” Recognition of Al3+ Based on 2-Hydroxy-Naphthalene-Formaldehyde Benzoyl-Hydrazone Derivatives[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 599-605. doi: 10.11944/j.issn.1000-0518.2016.05.150333 shu

“Naked-eye” and Fluorescence “Turn-on” Recognition of Al3+ Based on 2-Hydroxy-Naphthalene-Formaldehyde Benzoyl-Hydrazone Derivatives

  • Corresponding author: MA Peihua,  NI Xinlong, 
  • Received Date: 10 September 2015
    Available Online: 24 December 2015

    Fund Project:

  • The probe 4-hydroxy-benzoyl-(2-hydroxy-naphthalene-formaldehyde) hydrazone(L) was synthesized and evaluated. The UV-Vis and fluorescence spectra suggested that probe L has highly Al3+-selective affinity over others commonly coexistent metal ions by fluorescence enhancing. Meanwhile, the color change of probe L solution after addition of Al3+ is obvious. 1H NMR titration, job-plot, and (MALDI-TOF) results indicate that the complex molar ratio of Al3+/L is 1:2. The binding constant of Al3+/L is calculated to be 1.3×104 L/mol by nonlinear curve-fitting based on the UV-Vis titration data, and the detection limit reaches 3.71×10-6 L/mol. The UV-Vis and fluorescence emission titration experiment show that a wide range and low detection limit can be achieved in the present sensing system. This result suggests that the probe L has potential application in determination of trace Al3+ ions.
  • 加载中
    1. [1]

      [1] DeVoto E,Yokel R A. The Biological Speciation and Toxicokinetics of Aluminum[J]. Environ Health Perspect,1994,102(11):940-951.

    2. [2]

      [2] Berthon G. Aluminium Speciation in Relation to Aluminium Bioavailability, Metabolism and Toxicity[J]. Chem Rev,2002,228(2/3):319-341.

    3. [3]

      [3] Yousef M I,EI-Morsy A M A,Hassan M S. Aluminium-Induced Deterioration in Reproductive Performance and Seminal Plasma Biochemistry of Male Rabbits:Protective Role of Ascorbic Acid[J]. Toxicology,2005,215(1/2):97-107.

    4. [4]

      [4] Altschuler E. Aluminum-containing Antacids as a Cause of Idiopathic Parkinson's Disease[J]. Med Hypotheses,1999,53(1):22-23.

    5. [5]

      [5] Walton J R. Aluminum in Hippocampal Neurons from Humans with Alzheimer's Disease[J]. NeuroToxicology,2006,27(3):385-394.

    6. [6]

      [6] Exley C,House E R. Aluminium in the Human Brain[J]. Monatsh Chem,2011,142(4):357-363.

    7. [7]

      [7] Wang B,Deng X. Effects of Chronic Aluminum Exposure on Memory Through Multiple Signal Transduction Pathways[J]. Environ Toxicol Pharmaeol,2010,29(3):308-313.

    8. [8]

      [8] Tomljenovic L. Aluminum and Alzheimer's Disease:After a Century of Controversy, Is there a Plausible Link?[J]. Alzheimer's Dis,2011,23(4):567-598.

    9. [9]

      [9] Tasleem A Z,Dorothy T,Curtis A,et al. Aluminum Negatively Impacts Calcium Utilization and Bone in Calcium-Deficient Rats[J]. Nutr Res,2004,24(3):243-259.

    10. [10]

      [10] Guo C H,Hsu G S W,Chuang C J,et al. Aluminum Accumulation Induced Testicular Oxidative Stress and Altered Selenium Metabolism in Mice[J]. Environ Toxicol Pharmaeol,2009,27(2):176-181.

    11. [11]

      [11] Pochenneder C,Gunse B,Corrales L,et al. A Glance into Aluminum Toxicity and Resistance in Plants[J]. Sci Total Environ,2008,400(1/2/3):356-368.

    12. [12]

      [12] Barcalo J,Poschenrieder C. Fast Root Growth Responses, Root Exudates, and Internal Detoxification as Clues to the Mechanisms of Aluminium Toxicity and Resistance:A Review[J]. Environ Exp Bot,2002,48(1):75-92.

    13. [13]

      [13] Valeur B,Leray I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition[J]. Coord Chem Rev,2000,205(1):3-40.

    14. [14]

      [14] Seol H,Shin S C,Shim Y B. Trace Analysis of Al(Ⅲ) Ions Based on the Redox Current of a Conducting Polymer[J]. Electroanalysis,2004,16(24):2051-2057.

    15. [15]

      [15] Goswami S,Paul S,Manna A. Selective "Naked eye" Detection of Al(Ⅲ) and PPi in Aqueous Media on a Rhodamine-Isatin Hybrid Moiety[J]. RSC Adv,2013,3(27):10639-10643.

    16. [16]

      [16] Lee S,Ahn A,Choi M Y. Direct Observation of Aluminium Ions Produced via Pulsed Laser Ablation in Liquid:A 'Turn-on' Fluorescence Study[J]. Phys Chem Chem Phys,2012,14(45):15677-15681.

    17. [17]

      [17] Yang Z,Cao J,He Y,et al. Macro-/Micro-Environment-Sensitive Chemosensing and Biological Imaging[J]. Chem Soc Rev,2014,43(13):4563-4601.

    18. [18]

      [18] Liu Z,He W,Pei M,et al. A Fluorescent Sensor with a Detection Level of pM for Cd2+ and nM for Cu2+ Based on Different Mechanisms[J]. Chem Commun,2015,51(75):14227-14230.

    19. [19]

      [19] Cheng H,Qian Y. A Novel BODIPY-Schiff Base-Based Colorimetric and Fluorometric Dosimeter for Hg2+, Fe3+ and Au3+[J]. RSC Adv,2015,5(101):82887-82893.

    20. [20]

      [20] Chang Y,Wu S,Hu C,et al. A New Bifunctional Schiff Base as a Colorimetric and Fluorescence Sensor for Al3+ and CN-[J]. Inorg Chim Acta,2015,432:25-31.

    21. [21]

      [21] He L,Liu C,Xin J. A Novel Turn-on Colorimetric and Fluorescent Sensor for Fe3+ and Al3+ with Solvent-Dependent Binding Properties and Its Sequentialresponse to Carbonate[J]. Sens Actuator B,2015,213:181-187.

    22. [22]

      [22] Hung P,Chir J,Ting W,et al. A Selective Colorimetric and Ratiometric Fluorescent Chemosensor for Detectionof Al3+ Ion[J]. J Lumin,2015,158:371-375.

    23. [23]

      [23] Upadhyay K K,Kumar A. Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J]. Org Biomol Chem,2010,8(21):4892-4897.

    24. [24]

      [24] Sahana A,Banerjee A,Lohar S,et al. Rhodamine-Based Fluorescent Probe for Al3+ Through Time-Dependent PET-CHEF-FRET Processes and Its Cell Staining Application[J]. Inorg Chem,2013,52(7):3627-3633.

    25. [25]

      [25] Das S,Sahana A,Banerjee A,Banerjee A,et al. Ratiometric Fluorescence Sensing and Intracellular Imaging of Al3+ Ions Driven by an Intramolecular Excimer Formation of a Pyrimidine-Pyrene Scaffold[J]. Dalton Trans,2013,42(14):4757-4763.

    26. [26]

      [26] Edward J T,Gauthier M,Chubb, F L,et al. Synthesis of New Acylhydrazones as Iron-Chelating Compounds[J]. J Chem Eng Data,1988,33(4):538-540.

    27. [27]

      [27] Melnyk P,Leroux V,Sergheraerta C,et al. Design, Synthesis and in Vitro Antimalarial Activity of an Acylhydrazone Library[J]. Bioorg Med Chem Lett,2006,16(1):31-35.

    28. [28]

      [28] Tiwari K,Mishra M,Singh V P. A Highly Sensitive and Selective Fluorescent Sensor for Al3+ Ions Based on Thiophene-2-carboxylic Acid Hydrazide Schiff Base[J]. RSC Adv,2013,3:12124-12132.

    29. [29]

      [29] Rodríguez-Córdoba W,Zugazagoitia J S,Collado-Fregoso E,et al. Excited State Intramolecular Proton Transfer in Schiff Bases. Decay of the Locally Excited Enol State Observed by Femtosecond Resolved Fluorescence[J]. J Phys Chem A,2007,111(28):6241-6247.

    30. [30]

      [30] Fan J,Sun W,Hu M. An ICT-Based Ratiometric Probe for Hydrazine and Its Application in Live Cells[J]. Chem Commun,2012,48(65):8117-8119.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    11. [11]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    12. [12]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    15. [15]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    16. [16]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(1)
  • Abstract views(408)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return