Citation:
GAO Guofeng, LI Dandan, HAO Genyan, LI Jinping, ZHAO Qiang. Progress and Prospect of Iron Based Anodic Oxygen Evolving Catalysts[J]. Chinese Journal of Applied Chemistry,
;2016, 33(5): 504-512.
doi:
10.11944/j.issn.1000-0518.2016.05.150287
-
Converting solar energy to hydrogen by water splitting is a major trend of the future energy development. Water oxidation is in the most important and complex step in the conversion. So it is critical to design a stable and efficient catalyst for the water oxidation. The development of Ruthenium-based water oxidation catalyst tends to maturity. However, its utilization is limited by the high price and low reserves. In recent years, iron as the same group of ruthenium for catalytic oxidation of water has received increasing attention. Here we summarize the progress of classification of iron-based water oxidation catalyst, the preparation method, and the catalytic system and mechanism. By analyzing current problems, we try to provide some reference for further design of water oxidation catalysts.
-
-
-
[1]
[1] Lewis N S,Nocera D G. Powering the Planet:Chemical Challenges in Solar Energy Utilization[J]. Proc Nat Acad Sci USA,2006,103(43):15729-15735.
-
[2]
[2] Kanan M W,Nocera D G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+[J]. Science,2008,321(5892):1072-1075.
-
[3]
[3] Duan L,Bozoglian F,Mandal S,et al. A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II[J]. Nat Chem,2012,4(5):418-423.
-
[4]
[4] Concepcion J J,Jurss J W,Brennaman M K,et al. Making Oxygen with Ruthenium Complexes[J]. Acc Chem Res,2009,42(12):1954-1965.
-
[5]
[5] McDaniel N D,Coughlin F J,Tinker L L,et al. Cyclometalated Iridium(Ⅲ) Aquo Complexes: Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water[J]. J Am Chem Soc,2008,130(1):210-217.
-
[6]
[6] Cao R,Ma H,Geletii Y V,et al. Structurally Characterized Iridium(Ⅲ)-Containing Polytungstate and Catalytic Water Oxidation Activity[J]. Inorg Chem,2009,48(13):5596-5598.
-
[7]
[7] Savini A,Bellachioma G,Ciancaleoni G,et al. Iridium(Ⅲ) Molecular Catalysts for Water Oxidation:The Simpler the Faster[J]. Chem Commun,2010,46(48):9218-9219.
-
[8]
[8] Wang W,Zhao Q,Dong J,et al. A Novel Silver Oxides Oxygen Evolving Catalyst for Water Splitting[J]. Int J Hydrogen Energy,2011,36(13):7374-7380.
-
[9]
[9] Zhao Q,Yu Z,Yuan W,et al. A WO3/Ag-Bi Oxygen-Evolution Catalyst for Splitting Water under Mild Conditions[J]. Int J Hydrogen Energy,2012,37(18):13249-13255.
-
[10]
[10] Zhao Q,Yu Z,Hao G,et al. Modulated Crystalline Ag-Ci Oxygen-Evolving Catalysts for Electrocatalytic Water Oxidation[J]. Int J Hydrogen Energy,2014,39(3):1364-1370.
-
[11]
[11] Santoni M P,La Ganga G,Nardo V M,et al. The Use of a Vanadium Species as a Catalyst in Photoinduced Water Oxidation[J]. J Am Chem Soc,2014,136(23):8189-8192.
-
[12]
[12] Zaharieva I,Chernev P,Risch M,et al. Electrosynthesis, Functional, and Structural Characterization of a Water-Oxidizing Manganese Oxide[J]. Energy Environ Sci,2012,5(5):7081-7089.
-
[13]
[13] Takashima T,Hashimoto K,Nakamura R. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions[J]. J Am Chem Soc,2012,134(44):18153-18156.
-
[14]
[14] Yamaguchi A,Inuzuka R,Takashima T,et al. Regulating Proton-Coupled Electron Transfer for Efficient Water Splitting by Manganese Oxides at Neutral pH[J]. Nat Commun,2014,5:DOI:10.1038/ncomms5256.
-
[15]
[15] Jin K,Park J,Lee J,et al. Hydrated Manganese(Ⅱ) Phosphate (Mn(3)(PO(4))(2)·3H(2)O) as a Water Oxidation Catalyst[J]. J Am Chem Soc,2014,136(20):7435-7443.
-
[16]
[16] Wiechen M,Berends H M,Kurz P. Water Oxidation Catalysed by Manganese Compounds:from Complexes to 'Biomimetic Rocks'[J]. Dalton Trans,2012,41(1):21-31.
-
[17]
[17] Coggins M K,Zhang M T,Vannucci A K,et al. Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(Ⅲ)-Aqua Complex[J]. J Am Chem Soc,2014,136(15):5531-5534.
-
[18]
[18] Hamann T W. Splitting Water with Rust:Hematite Photoelectrochemistry[J]. Dalton Trans,2012,41(26):7830-7834.
-
[19]
[19] Klahr B,Gimenez S,Fabregat-Santiago F,et al. Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes[J]. Energy Environ Sci,2012,5(6):7626-7636.
-
[20]
[20] Wu Y,Chen M,Han Y,et al. Fast and Simple Preparation of Iron-Based Thin Films as Highly Efficient Water-Oxidation Catalysts in Neutral Aqueous Solution[J]. Angew Chem Int Ed,2015,127(16):4952-4957.
-
[21]
[21] Bloor L G,Molina P I,Symes M D,et al. Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts that Self-Assemble in Situ[J]. J Am Chem Soc,2014,136(8):3304-3311.
-
[22]
[22] Joya,K S,Takanabe K,de Groot H J M. Surface Generation of a Cobalt-Derived Water Oxidation Electrocatalyst Developed in a Neutral HCO3-/CO2 System[J]. Adv Energy Mater,2014,4(16):DOI:10.1002/aenm.201400252.
-
[23]
[23] Dinca M,Surendranath Y,Nocera D G. Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions[J]. Proc Natl Acad Sci USA,2010,107(23):10337-10341.
-
[24]
[24] Joya K S,Joya Y F,de Groot H J M. Ni-Based Electrocatalyst for Water Oxidation Developed in-Situ in a HCO3-/CO2 System at Near-Neutral pH[J]. Adv Energy Mater,2014,4(9):105-110.
-
[25]
[25] Gao M,Sheng W,Zhuang Z,et al. Efficient Water Oxidation Using Nanostructured Alpha-Nickel-Hydroxide as an Electrocatalyst[J]. J Am Chem Soc,2014,136(19):7077-7084.
-
[26]
[26] Chen Z F,Glasson C R K,Holland P L,et al. Electrogenerated Polypyridyl Ruthenium Hydride and Ligand Activation for Water Reduction to Hydrogen and Acetone to Iso-propanol[J]. Phys Chem Chem Phys,2013,15(24):9503-9507.
-
[27]
[27] Zhang T,Wang C,Liu S,et al. A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential[J]. J Am Chem Soc,2014,136(1):273-281.
-
[28]
[28] Zhao Q,Hao G,Yuan W,et al. Novel Copper Oxides Oxygen Evolving Catalyst in Situ for Electrocatalytic Water Splitting[J]. Electrochim Acta,2015,152:280-285.
-
[29]
[29] Trotochaud L,Ranney J K,Williams K N,et al. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution[J]. J Am Chem Soc,2012,134(41):17253-17261.
-
[30]
[30] Louie M W,Bell A T. An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen[J]. J Am Chem Soc,2013,135(33):12329-12337.
-
[31]
[31] Chen J Y,Miller J T,Gerken J B,et al. Inverse Spinel NiFeAlO4 as a Highly Active Oxygen Evolution Electrocatalyst:Promotion of Activity by a Redox-Inert Metal Ion[J]. Energy Environ Sci,2014,7(4):1382-1386.
-
[32]
[32] Elizarova G L,Matvienko L G,Lozhkina N V,et al. Homogeneous Catalysts for Dioxygen Evolution from Water Oxidation of Water by Trisbipyridylruthenium(Ⅲ) in the Presence of Metallophthalocyanines[J]. React Kinet Catal Lett,1981,16(2):285-288.
-
[33]
[33] Ellis W C,McDaniel N D,Bernhard S,et al. Fast Water Oxidation Using Iron[J]. J Am Chem Soc,2010,132(32):10990-10991.
-
[34]
[34] Fillol J L,Codolà Z,Garcia-Bosch I,et al. Efficient Water Oxidation Catalysts Based on Readily Available Iron Coordination Complexes[J]. Nat Chem,2011,3(10):807-813.
-
[35]
[35] Hoffert W A,Mock M T,Appel A M,et al. Incorporation of Hydrogen-Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water-Oxidation Catalysts[J]. Eur J Inorg Chem,2013,2013(22/23):3846-3857.
-
[36]
[36] Liu Y,Xiang R,Du X,et al. An Efficient Oxygen Evolving Catalyst Based on a μ-O Diiron Coordination Complex[J]. Chem Commun,2014,50(84):12779-12782.
-
[37]
[37] Tan P,Kwong H K,Lau T C. Catalytic Oxidation of Water and Alcohols by a Robust Iron(Ⅲ) Complex Bearing A Cross-Bridged Cyclam Ligand[J]. Chem Commun,2015,51(61):12189-12192.
-
[38]
[38] Chemelewski W D,Lee H C,Lin J F,et al. Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting[J]. J Am Chem Soc,2014,136(7):2843-2850.
-
[39]
[39] Du X,Ding Y,Song F,et al. Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6]27- Based on Abundant Metals[J]. Chem Commun,2015,51(73):13925-13928.
-
[40]
[40] Corrigan D A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes[J]. J Electrochem Soc,1987,134(2):377-384.
-
[41]
[41] Trotochaud L,Young S L,Ranney J K,et al. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts:The Role of Intentional and Incidental Iron Incorporation[J]. J Am Chem Soc,2014,136(18):6744-53.
-
[42]
[42] Gong M,Li Y,Wang H,et al. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc,2013,135(23):8452-8455.
-
[43]
[43] Lu X,Zhao C. Electrodeposition of Hierarchically Structured Three-dimensional Nickel-Iron Electrodes for Efficient Oxygen Evolution at High Current Densities[J]. Nat Commun,2015,6:DOI:10.1038/ncomms7616.
-
[44]
[44] Qiu Y,Xin L,Li W Z. Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni-Fe Nanoparticles in Alkaline Electrolyte[J]. Langmuir,2014,30(26):7893-7901.
-
[45]
[45] Indra A,Menezes P W,Sahraie N R,et al. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions:Amorphous Beat Crystalline Cobalt Iron Oxides[J]. J Am Chem Soc,2014,136(50):17530-17536.
-
[46]
[46] Burke M S,Kast M G,Trotochaud L,et al. Cobalt-Iron(Oxy) Hydroxide Oxygen Evolution Electrocatalysts:The Role of Structure and Composition on Activity,Stability, and Mechanism[J]. J Am Chem Soc,2015,137(10):3638-3648.
-
[47]
[47] Valdez R,Grotjahn D B,Smith D K,et al. Nanosheets of Co-(Ni and Fe) Layered Double Hydroxides for Electrocatalytic Water Oxidation Reaction[J]. Int J Electrochem Sci,2015,10:909-918.
-
[48]
[48] Gu Y,Jia D,Peng Y,et al. Hierarchical Porous Co3O4@CoxFe3-xO4 Film as an Advanced Electrocatalyst for Oxygen Evolution Reaction[J]. RSC Adv,2015,5(12):8882-8886.
-
[49]
[49] Elmaci G,Frey C E,Kurz P,et al. Water Oxidation Catalysis by Birnessite@Iron Oxide Core-Shell Nanocomposites[J]. Inorg Chem,2015,54(6):2734-2741.
-
[50]
[50] Smith R D,Prevot M S,Fagan R D,et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63.
-
[51]
[51] Friebel D,Louie M W,Bajdich M,et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting[J]. J Am Chem Soc,2015,137(3):1305-1313.
-
[52]
[52] Peulon S,Antony H,Legrand L,et al. Thin Layers of Iron Corrosion Products Electrochemically Deposited on Inert Substrates:Synthesis and Behaviour[J]. Electrochim Acta,2004,49(17/18):2891-2899.
-
[53]
[53] Lu B,Cao D,Wang P,et al. Oxygen Evolution Reaction on Ni-Substituted Co3O4 Nanowire Array Electrodes[J]. Int J Hydrogen Energ,2011,36(1):72-78.
-
[54]
[54] Liu K,Wang H,Wu Q,et al. Nanocube-Based Hematite Photoanode Produced in the Presence of Na2HPO4 for Efficient Solar Water Splitting[J]. J Power Sources,2015,283(1):381-388.
-
[55]
[55] Matijević E,Scheiner P,Ferric Hydrous Oxide Sols:Ⅲ Preparation of Uniform Particles by Hydrolysis of Fe(Ⅲ)-Chloride, -Nitrate, and -Perchlorate Solutions[J]. J Colloid Interface Sci,1978,63(3):509-524.
-
[56]
[56] Ishikawa T,Isa R,Kandori K,et al. Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions[J]. J Electrochem Soc,2004,151(11):13586-13594.
-
[57]
[57] Orlandi M,Caramori S,Ronconi F,et al. Pulsed-Laser Deposition of Nanostructured Iron Oxide Catalysts for Efficient Water Oxidation[J]. ACS Appl Mater Int,2014,6(9):6186-6190.
-
[58]
[58] Le Formal F,Grätzel M,Sivula K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting[J]. Adv Funct Mater,2010,20(7):1099-1107.
-
[59]
[59] Tilley S D,Cornuz M,Sivula K,et al. Light-Induced Water Splitting with Hematite:Improved Nanostructure and Iridium Oxide Catalysis[J]. Angew Chem Int Edit,2010,49(36):6405-6408.
-
[60]
[60] Smith R D L,Prévot M S,Fagan R D,et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63.
-
[61]
[61] Kim H,Seol M,Lee J,et al. Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WOx Nanowires Cosensitized with CdSe/CdS[J]. J Phys Chem C,2011,115(51):25429-25436.
-
[62]
[62] Duret A,Gratzel M. Visible Light-Induced Water Oxidation on Mesoscopic Alpha-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis[J]. J Phys Chem B,2005,109(36):17184-17191.
-
[63]
[63] Khan S U M,Akikusa J. Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes[J]. J Phys Chem B,1999,103(34):7184-7189.
-
[64]
[64] Jorand Sartoretti C,Alexander B D,Solarska R,et al. Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes[J]. J Phys Chem B,2005,109(28):13685-13692.
-
[65]
[65] Lin Y,Zhou S,Sheehan S W,et al. Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting[J]. J Am Chem Soc,2011,133(8):2398-2401.
-
[66]
[66] Glasscock J A,Barnes P R F,Plumb I C,et al. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si[J]. J Phys Chem C,2007,111(44):16477-16488.
-
[67]
[67] Chen Z,Concepcion J J,Luo H,et al. Nonaqueous Catalytic Water Oxidation[J]. J Am Chem Soc,2010,132(50):17670-17673.
-
[68]
[68] Chen Z,Concepcion J J,Hu X,et al. Concerted O Atom-Proton Transfer in the O-O Bond Forming Step in Water Oxidation[J]. Proc Natl Acad Sci USA,2010,107(16):7225-7229.
-
[69]
[69] Codola Z,Gomez L,Kleespies S T,et al. Evidence for an Oxygen Evolving Iron-Oxo-Cerium Intermediate in Iron-Catalysed Water Oxidation[J]. Nat Commun,2015,6:DOI:10.1038/ncomms6865.
-
[70]
[70] Rossmeisl J,Logadottir A,Nørskov J K. Electrolysis of Water on (Oxidized) Metal Surfaces[J]. Chem Phys,2005,319(1):178-184.
-
[71]
[71] Man I C,Su H Y,Calle-Vallejo F,et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces[J]. Chem Cat Chem,2011,3(7):1159-1165.
-
[72]
[72] Betley T A,Wu Q,Van Voorhis T,et al. Electronic Design Criteria for O-O Bond Formation via Metal-Oxo Complexes[J]. Inorg Chem,2008,47(6):1849-1861.
-
[73]
[73] Mavros M G,Tsuchimochi T,Kowalczyk T,et al. What can Density Functional Theory Tell us about Artificial Catalytic Water Splitting?[J]. Inorg Chem,2014,53(13):6386-6397.
-
[74]
[74] Goodenough J B,Manoharan R,Paranthaman M. Surface Protonation and Electrochemical Activity of Oxides in Aqueous Solution[J]. J Am Chem Soc,1990,112(6):2076-2082.
-
[75]
[75] Hong W T,Risch M,Stoerzinger K A,et al. Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis[J]. Energ Environ Sci,2015,8(5):1404-1427.
-
[1]
-
-
-
[1]
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
-
[2]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[3]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[4]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[5]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[6]
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
-
[7]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[8]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[9]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[10]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[11]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[12]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[13]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[14]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[15]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[16]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[17]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[18]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[19]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[20]
Minglei Sun , Zhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(599)
- HTML views(53)