Citation: GAO Guofeng, LI Dandan, HAO Genyan, LI Jinping, ZHAO Qiang. Progress and Prospect of Iron Based Anodic Oxygen Evolving Catalysts[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 504-512. doi: 10.11944/j.issn.1000-0518.2016.05.150287 shu

Progress and Prospect of Iron Based Anodic Oxygen Evolving Catalysts

  • Corresponding author: ZHAO Qiang, 
  • Received Date: 12 August 2015
    Available Online: 20 November 2015

    Fund Project:

  • Converting solar energy to hydrogen by water splitting is a major trend of the future energy development. Water oxidation is in the most important and complex step in the conversion. So it is critical to design a stable and efficient catalyst for the water oxidation. The development of Ruthenium-based water oxidation catalyst tends to maturity. However, its utilization is limited by the high price and low reserves. In recent years, iron as the same group of ruthenium for catalytic oxidation of water has received increasing attention. Here we summarize the progress of classification of iron-based water oxidation catalyst, the preparation method, and the catalytic system and mechanism. By analyzing current problems, we try to provide some reference for further design of water oxidation catalysts.
  • 加载中
    1. [1]

      [1] Lewis N S,Nocera D G. Powering the Planet:Chemical Challenges in Solar Energy Utilization[J]. Proc Nat Acad Sci USA,2006,103(43):15729-15735.

    2. [2]

      [2] Kanan M W,Nocera D G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+[J]. Science,2008,321(5892):1072-1075.

    3. [3]

      [3] Duan L,Bozoglian F,Mandal S,et al. A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II[J]. Nat Chem,2012,4(5):418-423.

    4. [4]

      [4] Concepcion J J,Jurss J W,Brennaman M K,et al. Making Oxygen with Ruthenium Complexes[J]. Acc Chem Res,2009,42(12):1954-1965.

    5. [5]

      [5] McDaniel N D,Coughlin F J,Tinker L L,et al. Cyclometalated Iridium(Ⅲ) Aquo Complexes: Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water[J]. J Am Chem Soc,2008,130(1):210-217.

    6. [6]

      [6] Cao R,Ma H,Geletii Y V,et al. Structurally Characterized Iridium(Ⅲ)-Containing Polytungstate and Catalytic Water Oxidation Activity[J]. Inorg Chem,2009,48(13):5596-5598.

    7. [7]

      [7] Savini A,Bellachioma G,Ciancaleoni G,et al. Iridium(Ⅲ) Molecular Catalysts for Water Oxidation:The Simpler the Faster[J]. Chem Commun,2010,46(48):9218-9219.

    8. [8]

      [8] Wang W,Zhao Q,Dong J,et al. A Novel Silver Oxides Oxygen Evolving Catalyst for Water Splitting[J]. Int J Hydrogen Energy,2011,36(13):7374-7380.

    9. [9]

      [9] Zhao Q,Yu Z,Yuan W,et al. A WO3/Ag-Bi Oxygen-Evolution Catalyst for Splitting Water under Mild Conditions[J]. Int J Hydrogen Energy,2012,37(18):13249-13255.

    10. [10]

      [10] Zhao Q,Yu Z,Hao G,et al. Modulated Crystalline Ag-Ci Oxygen-Evolving Catalysts for Electrocatalytic Water Oxidation[J]. Int J Hydrogen Energy,2014,39(3):1364-1370.

    11. [11]

      [11] Santoni M P,La Ganga G,Nardo V M,et al. The Use of a Vanadium Species as a Catalyst in Photoinduced Water Oxidation[J]. J Am Chem Soc,2014,136(23):8189-8192.

    12. [12]

      [12] Zaharieva I,Chernev P,Risch M,et al. Electrosynthesis, Functional, and Structural Characterization of a Water-Oxidizing Manganese Oxide[J]. Energy Environ Sci,2012,5(5):7081-7089.

    13. [13]

      [13] Takashima T,Hashimoto K,Nakamura R. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions[J]. J Am Chem Soc,2012,134(44):18153-18156.

    14. [14]

      [14] Yamaguchi A,Inuzuka R,Takashima T,et al. Regulating Proton-Coupled Electron Transfer for Efficient Water Splitting by Manganese Oxides at Neutral pH[J]. Nat Commun,2014,5:DOI:10.1038/ncomms5256.

    15. [15]

      [15] Jin K,Park J,Lee J,et al. Hydrated Manganese(Ⅱ) Phosphate (Mn(3)(PO(4))(2)·3H(2)O) as a Water Oxidation Catalyst[J]. J Am Chem Soc,2014,136(20):7435-7443.

    16. [16]

      [16] Wiechen M,Berends H M,Kurz P. Water Oxidation Catalysed by Manganese Compounds:from Complexes to 'Biomimetic Rocks'[J]. Dalton Trans,2012,41(1):21-31.

    17. [17]

      [17] Coggins M K,Zhang M T,Vannucci A K,et al. Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(Ⅲ)-Aqua Complex[J]. J Am Chem Soc,2014,136(15):5531-5534.

    18. [18]

      [18] Hamann T W. Splitting Water with Rust:Hematite Photoelectrochemistry[J]. Dalton Trans,2012,41(26):7830-7834.

    19. [19]

      [19] Klahr B,Gimenez S,Fabregat-Santiago F,et al. Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes[J]. Energy Environ Sci,2012,5(6):7626-7636.

    20. [20]

      [20] Wu Y,Chen M,Han Y,et al. Fast and Simple Preparation of Iron-Based Thin Films as Highly Efficient Water-Oxidation Catalysts in Neutral Aqueous Solution[J]. Angew Chem Int Ed,2015,127(16):4952-4957.

    21. [21]

      [21] Bloor L G,Molina P I,Symes M D,et al. Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts that Self-Assemble in Situ[J]. J Am Chem Soc,2014,136(8):3304-3311.

    22. [22]

      [22] Joya,K S,Takanabe K,de Groot H J M. Surface Generation of a Cobalt-Derived Water Oxidation Electrocatalyst Developed in a Neutral HCO3-/CO2 System[J]. Adv Energy Mater,2014,4(16):DOI:10.1002/aenm.201400252.

    23. [23]

      [23] Dinca M,Surendranath Y,Nocera D G. Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions[J]. Proc Natl Acad Sci USA,2010,107(23):10337-10341.

    24. [24]

      [24] Joya K S,Joya Y F,de Groot H J M. Ni-Based Electrocatalyst for Water Oxidation Developed in-Situ in a HCO3-/CO2 System at Near-Neutral pH[J]. Adv Energy Mater,2014,4(9):105-110.

    25. [25]

      [25] Gao M,Sheng W,Zhuang Z,et al. Efficient Water Oxidation Using Nanostructured Alpha-Nickel-Hydroxide as an Electrocatalyst[J]. J Am Chem Soc,2014,136(19):7077-7084.

    26. [26]

      [26] Chen Z F,Glasson C R K,Holland P L,et al. Electrogenerated Polypyridyl Ruthenium Hydride and Ligand Activation for Water Reduction to Hydrogen and Acetone to Iso-propanol[J]. Phys Chem Chem Phys,2013,15(24):9503-9507.

    27. [27]

      [27] Zhang T,Wang C,Liu S,et al. A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential[J]. J Am Chem Soc,2014,136(1):273-281.

    28. [28]

      [28] Zhao Q,Hao G,Yuan W,et al. Novel Copper Oxides Oxygen Evolving Catalyst in Situ for Electrocatalytic Water Splitting[J]. Electrochim Acta,2015,152:280-285.

    29. [29]

      [29] Trotochaud L,Ranney J K,Williams K N,et al. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution[J]. J Am Chem Soc,2012,134(41):17253-17261.

    30. [30]

      [30] Louie M W,Bell A T. An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen[J]. J Am Chem Soc,2013,135(33):12329-12337.

    31. [31]

      [31] Chen J Y,Miller J T,Gerken J B,et al. Inverse Spinel NiFeAlO4 as a Highly Active Oxygen Evolution Electrocatalyst:Promotion of Activity by a Redox-Inert Metal Ion[J]. Energy Environ Sci,2014,7(4):1382-1386.

    32. [32]

      [32] Elizarova G L,Matvienko L G,Lozhkina N V,et al. Homogeneous Catalysts for Dioxygen Evolution from Water Oxidation of Water by Trisbipyridylruthenium(Ⅲ) in the Presence of Metallophthalocyanines[J]. React Kinet Catal Lett,1981,16(2):285-288.

    33. [33]

      [33] Ellis W C,McDaniel N D,Bernhard S,et al. Fast Water Oxidation Using Iron[J]. J Am Chem Soc,2010,132(32):10990-10991.

    34. [34]

      [34] Fillol J L,Codolà Z,Garcia-Bosch I,et al. Efficient Water Oxidation Catalysts Based on Readily Available Iron Coordination Complexes[J]. Nat Chem,2011,3(10):807-813.

    35. [35]

      [35] Hoffert W A,Mock M T,Appel A M,et al. Incorporation of Hydrogen-Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water-Oxidation Catalysts[J]. Eur J Inorg Chem,2013,2013(22/23):3846-3857.

    36. [36]

      [36] Liu Y,Xiang R,Du X,et al. An Efficient Oxygen Evolving Catalyst Based on a μ-O Diiron Coordination Complex[J]. Chem Commun,2014,50(84):12779-12782.

    37. [37]

      [37] Tan P,Kwong H K,Lau T C. Catalytic Oxidation of Water and Alcohols by a Robust Iron(Ⅲ) Complex Bearing A Cross-Bridged Cyclam Ligand[J]. Chem Commun,2015,51(61):12189-12192.

    38. [38]

      [38] Chemelewski W D,Lee H C,Lin J F,et al. Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting[J]. J Am Chem Soc,2014,136(7):2843-2850.

    39. [39]

      [39] Du X,Ding Y,Song F,et al. Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6]27- Based on Abundant Metals[J]. Chem Commun,2015,51(73):13925-13928.

    40. [40]

      [40] Corrigan D A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes[J]. J Electrochem Soc,1987,134(2):377-384.

    41. [41]

      [41] Trotochaud L,Young S L,Ranney J K,et al. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts:The Role of Intentional and Incidental Iron Incorporation[J]. J Am Chem Soc,2014,136(18):6744-53.

    42. [42]

      [42] Gong M,Li Y,Wang H,et al. An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc,2013,135(23):8452-8455.

    43. [43]

      [43] Lu X,Zhao C. Electrodeposition of Hierarchically Structured Three-dimensional Nickel-Iron Electrodes for Efficient Oxygen Evolution at High Current Densities[J]. Nat Commun,2015,6:DOI:10.1038/ncomms7616.

    44. [44]

      [44] Qiu Y,Xin L,Li W Z. Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni-Fe Nanoparticles in Alkaline Electrolyte[J]. Langmuir,2014,30(26):7893-7901.

    45. [45]

      [45] Indra A,Menezes P W,Sahraie N R,et al. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions:Amorphous Beat Crystalline Cobalt Iron Oxides[J]. J Am Chem Soc,2014,136(50):17530-17536.

    46. [46]

      [46] Burke M S,Kast M G,Trotochaud L,et al. Cobalt-Iron(Oxy) Hydroxide Oxygen Evolution Electrocatalysts:The Role of Structure and Composition on Activity,Stability, and Mechanism[J]. J Am Chem Soc,2015,137(10):3638-3648.

    47. [47]

      [47] Valdez R,Grotjahn D B,Smith D K,et al. Nanosheets of Co-(Ni and Fe) Layered Double Hydroxides for Electrocatalytic Water Oxidation Reaction[J]. Int J Electrochem Sci,2015,10:909-918.

    48. [48]

      [48] Gu Y,Jia D,Peng Y,et al. Hierarchical Porous Co3O4@CoxFe3-xO4 Film as an Advanced Electrocatalyst for Oxygen Evolution Reaction[J]. RSC Adv,2015,5(12):8882-8886.

    49. [49]

      [49] Elmaci G,Frey C E,Kurz P,et al. Water Oxidation Catalysis by Birnessite@Iron Oxide Core-Shell Nanocomposites[J]. Inorg Chem,2015,54(6):2734-2741.

    50. [50]

      [50] Smith R D,Prevot M S,Fagan R D,et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63.

    51. [51]

      [51] Friebel D,Louie M W,Bajdich M,et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting[J]. J Am Chem Soc,2015,137(3):1305-1313.

    52. [52]

      [52] Peulon S,Antony H,Legrand L,et al. Thin Layers of Iron Corrosion Products Electrochemically Deposited on Inert Substrates:Synthesis and Behaviour[J]. Electrochim Acta,2004,49(17/18):2891-2899.

    53. [53]

      [53] Lu B,Cao D,Wang P,et al. Oxygen Evolution Reaction on Ni-Substituted Co3O4 Nanowire Array Electrodes[J]. Int J Hydrogen Energ,2011,36(1):72-78.

    54. [54]

      [54] Liu K,Wang H,Wu Q,et al. Nanocube-Based Hematite Photoanode Produced in the Presence of Na2HPO4 for Efficient Solar Water Splitting[J]. J Power Sources,2015,283(1):381-388.

    55. [55]

      [55] Matijević E,Scheiner P,Ferric Hydrous Oxide Sols:Ⅲ Preparation of Uniform Particles by Hydrolysis of Fe(Ⅲ)-Chloride, -Nitrate, and -Perchlorate Solutions[J]. J Colloid Interface Sci,1978,63(3):509-524.

    56. [56]

      [56] Ishikawa T,Isa R,Kandori K,et al. Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions[J]. J Electrochem Soc,2004,151(11):13586-13594.

    57. [57]

      [57] Orlandi M,Caramori S,Ronconi F,et al. Pulsed-Laser Deposition of Nanostructured Iron Oxide Catalysts for Efficient Water Oxidation[J]. ACS Appl Mater Int,2014,6(9):6186-6190.

    58. [58]

      [58] Le Formal F,Grätzel M,Sivula K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting[J]. Adv Funct Mater,2010,20(7):1099-1107.

    59. [59]

      [59] Tilley S D,Cornuz M,Sivula K,et al. Light-Induced Water Splitting with Hematite:Improved Nanostructure and Iridium Oxide Catalysis[J]. Angew Chem Int Edit,2010,49(36):6405-6408.

    60. [60]

      [60] Smith R D L,Prévot M S,Fagan R D,et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63.

    61. [61]

      [61] Kim H,Seol M,Lee J,et al. Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WOx Nanowires Cosensitized with CdSe/CdS[J]. J Phys Chem C,2011,115(51):25429-25436.

    62. [62]

      [62] Duret A,Gratzel M. Visible Light-Induced Water Oxidation on Mesoscopic Alpha-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis[J]. J Phys Chem B,2005,109(36):17184-17191.

    63. [63]

      [63] Khan S U M,Akikusa J. Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes[J]. J Phys Chem B,1999,103(34):7184-7189.

    64. [64]

      [64] Jorand Sartoretti C,Alexander B D,Solarska R,et al. Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes[J]. J Phys Chem B,2005,109(28):13685-13692.

    65. [65]

      [65] Lin Y,Zhou S,Sheehan S W,et al. Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting[J]. J Am Chem Soc,2011,133(8):2398-2401.

    66. [66]

      [66] Glasscock J A,Barnes P R F,Plumb I C,et al. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si[J]. J Phys Chem C,2007,111(44):16477-16488.

    67. [67]

      [67] Chen Z,Concepcion J J,Luo H,et al. Nonaqueous Catalytic Water Oxidation[J]. J Am Chem Soc,2010,132(50):17670-17673.

    68. [68]

      [68] Chen Z,Concepcion J J,Hu X,et al. Concerted O Atom-Proton Transfer in the O-O Bond Forming Step in Water Oxidation[J]. Proc Natl Acad Sci USA,2010,107(16):7225-7229.

    69. [69]

      [69] Codola Z,Gomez L,Kleespies S T,et al. Evidence for an Oxygen Evolving Iron-Oxo-Cerium Intermediate in Iron-Catalysed Water Oxidation[J]. Nat Commun,2015,6:DOI:10.1038/ncomms6865.

    70. [70]

      [70] Rossmeisl J,Logadottir A,Nørskov J K. Electrolysis of Water on (Oxidized) Metal Surfaces[J]. Chem Phys,2005,319(1):178-184.

    71. [71]

      [71] Man I C,Su H Y,Calle-Vallejo F,et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces[J]. Chem Cat Chem,2011,3(7):1159-1165.

    72. [72]

      [72] Betley T A,Wu Q,Van Voorhis T,et al. Electronic Design Criteria for O-O Bond Formation via Metal-Oxo Complexes[J]. Inorg Chem,2008,47(6):1849-1861.

    73. [73]

      [73] Mavros M G,Tsuchimochi T,Kowalczyk T,et al. What can Density Functional Theory Tell us about Artificial Catalytic Water Splitting?[J]. Inorg Chem,2014,53(13):6386-6397.

    74. [74]

      [74] Goodenough J B,Manoharan R,Paranthaman M. Surface Protonation and Electrochemical Activity of Oxides in Aqueous Solution[J]. J Am Chem Soc,1990,112(6):2076-2082.

    75. [75]

      [75] Hong W T,Risch M,Stoerzinger K A,et al. Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis[J]. Energ Environ Sci,2015,8(5):1404-1427.

  • 加载中
    1. [1]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    6. [6]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    20. [20]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

Metrics
  • PDF Downloads(1)
  • Abstract views(600)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return