Citation: LIU Jiao, LI Renzhi, DONG Xiandui. Research Progress of Perovskite Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2016, 33(5): 489-503. doi: 10.11944/j.issn.1000-0518.2016.05.150210 shu

Research Progress of Perovskite Solar Cells

  • Corresponding author: DONG Xiandui, 
  • Received Date: 19 June 2015
    Available Online: 18 November 2015

    Fund Project:

  • Great attention has recently been gained because of the power conversion efficiency has rapidly increased from about 3% to 20.1% over the past six years since perovskite has been applied in solar cells in 2009. In this article, we propose to review the development in perovskite solar cells, introduce the property and preparation method of perovskite, summarize the structure and mechanism of perovskite solar cells, discuss how to break through and solve the problems in perovskite solar cells, state the impressive development, and present our outlook of the progress of perovskite solar cells.
  • 加载中
    1. [1]

      [1] Green M A,Emery K,Hishikawa Y,et al. Solar Cell Efficiency Tables (version 37)[J]. Prog Photovolt:Res Appl,2011,19(1):84-92.

    2. [2]

      [2] Green M A. The Path to 25% Silicon Solar Cell Efficiency:History of Silicon Cell Evolution[J]. Prog Photovolt:Res Appl,2009,17(3):183-189.

    3. [3]

      [3] Parida B,Iniyan S,Goic R. A Review of Solar Photovoltaic Technologies[J]. Renew Sustain Energy Rev,2011,15(3):1625-1636.

    4. [4]

      [4] Hodes G,Cahen D. All-Solid-State, Semiconductor-sensitized Nanoporous Solar Cells[J]. Acc Chem Res,2012,45(5):705-713.

    5. [5]

      [5] Seo J H,Gutacker A,Sun Y,et al. Improved High-efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer[J]. J Am Chem Soc,2011,133(22):8416-8419.

    6. [6]

      [6] O'Regan B,Gratzel M. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature,1991,353(6346):737-740.

    7. [7]

      [7] Mathew S,Yella A,Gao P. Dye-sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat Chem,2014,6(3):242-247.

    8. [8]

      [8] Yao Z,Zhang M,Li R,et al. A Metal-Free N-Annulated Thienocyclopentaperylene Dye:Power Conversion Efficiency of 12% for Dye-Sensitized Solar Cells[J]. Angew Chem,2015,127(20):6092-6096.

    9. [9]

      [9] Correspondents A C S C. Spotlights on Recent JACS Publications[J]. J Am Chem Soc,2015,137(12):3995-3995.

    10. [10]

      [10] Snaith H J. Perovskites:The Emergence of a New Era for Low-Cost,High-Efficiency Solar Cells[J]. J Phys Chem Lett,2013,4(21):3623-3630.

    11. [11]

      [11] Kojima A,Teshima K,Shirai Y,et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J Am Chem Soc,2009,131(17):6050-6051.

    12. [12]

      [12] Nie W,Tsai H,Asadpour R,et al. High-efficiency Solution-processed Perovskite Solar Cells with Millimeter-scale Grains[J]. Science,2015,347(6221):522-525.

    13. [13]

      [13] Yang W S,Noh J H,Jeon N J,et al. High-performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange[J]. Science,2015,348(6240):1234-1237.

    14. [14]

      [14] Wang B,Xiao X,Chen T. Perovskite Photovoltaics:A High-efficiency Newcomer to the Solar Cell Family[J]. Nanoscale,2014,6(21):12287-12297.

    15. [15]

      [15] Kazim S,Nazeeruddin M K,Gratzel M,et al. Perovskite as Light Harvester:A Game Changer in Photovoltaics[J]. Angew Chem Int Ed Engl,2014,53(11):2812-2824.

    16. [16]

      [16] XUE Qifan,SUN Chen,HU Zhicheng,et al. Recent Advances in Perovskite Solar Cells:Morphology Control and Interfacial Engineering[J]. Acta Chim Sin,2015,73(3):179-192(in Chinese).薛启帆,孙辰,胡志诚,等. 钙钛矿太阳电池研究进展:薄膜形貌控制与界面工程[J]. 化学学报,2015,73(3):179-192.

    17. [17]

      [17] RONG Yaoguang,MEI Anyi,LIU Linfeng,et al. All-solid-state Mesoscopic Solar Cells:From Dye-sensitized to Perovskite[J]. Acta Chim Sin,2015,73(3):237-251(in Chinese).荣耀光,梅安意,刘林峰,等. 全固态介观太阳能电池:从染料敏化到钙钛矿[J]. 化学学报,2015,73(3):237-251.

    18. [18]

      [18] GUO Xudong,NIU Guangda,WANG Liduo. Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency[J]. Acta Chim Sin,2015,73(3):211-218(in Chinese).郭旭东,牛广达,王立铎. 高效率钙钛矿型太阳能电池的化学稳定性及其研究进展[J]. 化学学报,2015,73(3):211-218.

    19. [19]

      [19] Mitzi D B,Wang S,Feild C A,et al. Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets[J]. Science,1995,267(5203):1473-1476.

    20. [20]

      [20] Amat A,Mosconi E,Ronca E,et al. Cation-Induced Band-Gap Tuning in Organohalide Perovskites:Interplay of Spin-Orbit Coupling and Octahedra Tilting[J]. Nano Lett,2014,14(6):3608-3616.

    21. [21]

      [21] Mosconi E,Ronca E,De Angelis F. First-Principles Investigation of the TiO2/Organohalide Perovskites Interface:The Role of Interfacial Chlorine[J]. J Phys Chem Lett,2014,5(15):2619-2625.

    22. [22]

      [22] Kagan C R. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors[J]. Science,1999,286(5441):945-947.

    23. [23]

      [23] Liu M,Johnston M B,Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature,2013,501(7467):395-398.

    24. [24]

      [24] Chen Q,Zhou H,Hong Z,et al. Planar Heterojunction Perovskite Solar Cells via Vapor-assisted Solution Process[J]. J Am Chem Soc,2014,136(2):622-625.

    25. [25]

      [25] Im J H,Lee C R,Lee J W,et al. 6.5% Efficient Perovskite Quantum-dot-sensitized Solar Cell[J]. Nanoscale,2011,3(10):4088-4093.

    26. [26]

      [26] Burschka J,Pellet N,Moon S J,et al. Sequential Deposition as a Route to High-performance Perovskite-sensitized Solar Cells[J]. Nature,2013,499(7458):316-319.

    27. [27]

      [27] Huang F,Dkhissi Y,Huang W,et al. Gas-assisted Preparation of Lead Iodide Perovskite Films Consisting of a Monolayer of Single Crystalline Grains for High Efficiency Planar Solar Cells[J]. Nano Energy,2014,10(20):10-18.

    28. [28]

      [28] Du T,Wang N,Chen H,et al. Comparative Study of Vapor- and Solution-crystallized Perovskite for Planar Heterojunction Solar Cells[J]. ACS Appl Mater Interfaces,2015,7(5):3382-3388.

    29. [29]

      [29] Zhou H,Chen Q,Li G,et al. Photovoltaics. Interface Engineering of Highly Efficient Perovskite Solar Cells[J]. Science,2014,345(6196):542-546.

    30. [30]

      [30] Habisreutinger S N,Leijtens T,Eperon G E,et al. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells[J]. Nano Lett,2014,14(10):5561-5568.

    31. [31]

      [31] Wojciechowski K,Saliba M,Leijtens T,et al. Sub-150 Degrees C Processed Meso-superstructured Perovskite Solar Cells with Enhanced Efficiency[J]. Energy Environ Sci,2014,7(3):1142-1147.

    32. [32]

      [32] Burschka J,Dualeh A,Kessler F,et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(Ⅲ) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells[J]. J Am Chem Soc,2011,133(45):18042-18045.

    33. [33]

      [33] Zhu Z,Bai Y,Zhang T,et al. High-performance Hole-extraction Layer of Sol-gel-processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells[J]. Angew Chem Int Ed Engl,2014,53(46):12571-12575.

    34. [34]

      [34] Noh J H,Im S H,Heo J H,et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells[J]. Nano Lett,2013,13(4):1764-1769.

    35. [35]

      [35] Zhu L,Xiao J,Shi J,et al. Efficient CH3NH3PbI3 Perovskite Solar Cells with 2TPA-n-DP Hole-transporting Layers[J]. Nano Res,2015,8(4):1116-1127.

    36. [36]

      [36] Snaith H J. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells[J]. Adv Funct Mater,2010,20(1):13-19.

    37. [37]

      [37] Shi J,Dong J,Lv S,et al. Hole-conductor-free Perovskite Organic Lead Iodide Heterojunction Thin-film Solar Cells:High Efficiency and Junction Property[J]. Appl Phys Lett,2014,104(6):063901-063904.

    38. [38]

      [38] Heo J H,Im S H,Noh J H,et al. Efficient Inorganic-organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors[J]. Nat Photonics,2013,7(6):487-492.

    39. [39]

      [39] Liu D,Kelly T L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-temperature Solution Processing Techniques[J]. Nat Photonics,2014,8(2):133-138.

    40. [40]

      [40] Kang S M,Ahn N,Lee J-W,et al. Water-repellent Perovskite Solar Cell[J]. J Mater Chem A,2014,2(47):20017-20021.

    41. [41]

      [41] Qiu L,Deng J,Lu X,et al. Integrating Perovskite Solar Cells into a Flexible Fiber[J]. Angew Chem Int Ed Eng,2014,53(39):10425-10428.

    42. [42]

      [42] Xing G,Mathews N,Sun S,et al. Long-range Balanced Electron- and Hole-transport Lengths in Organic-inorganic CH3NH3PbI3[J]. Science,2013,342(6156):344-347.

    43. [43]

      [43] Shi T,Yin W-J,Yan Y. Predictions for p-Type CH3NH3PbI3 Perovskites[J]. J Phys Chem C,2014,118(44):25350-25354.

    44. [44]

      [44] Gottesman R,Haltzi E,Gouda L,et al. Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions[J]. J Phys Chem Lett,2014,5(15):2662-2669.

    45. [45]

      [45] Wang Y,Gould T,Dobson J F,et al. Density Functional Theory Analysis of Structural and Electronic Properties of Orthorhombic Perovskite CH3NH3PbI3[J]. Phys Chem Chem Phys,2014,16(4):1424-1429.

    46. [46]

      [46] Roiati V,Mosconi E,Listorti A,et al. Stark Effect in Perovskite/TiO2 Solar Cells:Evidence of Local Interfacial Order[J]. Nano Lett,2014,14(4):2168-2174.

    47. [47]

      [47] Colella S,Mosconi E,Fedeli P,et al. MAPbI3-xCl<em>x Mixed Halide Perovskite for Hybrid Solar Cells:The Role of Chloride as Dopant on the Transport and Structural Properties[J]. Chem Mater,2013,25(22):4613-4618.

    48. [48]

      [48] Even J,Pedesseau L,Katan C,et al. Solid-State Physics Perspective on Hybrid Perovskite Semiconductors[J]. J Phys Chem C,2015,119(19):10161-10177.

    49. [49]

      [49] Yin J,Cortecchia D,Krishna A,et al. Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films[J]. J Phys Chem C Lett,2015,6(8):1396-1402.

    50. [50]

      [50] Lindblad R,Bi D,Park B W,et al. Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces[J]. J Phys Chem C Lett,2014,5(4):648-653.

    51. [51]

      [51] Wang L,McCleese C,Kovalsky A,et al. Femtosecond Time-resolved Transient Absorption Spectroscopy of CH3NH3PbI3 Perovskite Films:Evidence for Passivation Effect of PbI2[J]. J Am Chem Soc,2014,136(35):12205-12208.

    52. [52]

      [52] O'Regan B C,Barnes P R,Li X,et al. Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2:Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis[J]. J Am Chem Soc,2015,137(15):5087-5099.

    53. [53]

      [53] Eperon G E,Stranks S D,Menelaou C,et al. Formamidinium Lead Trihalide:A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells[J]. Energy Environ Sci,2014,7(3):982-988.

    54. [54]

      [54] Chung I,Lee B,He J,et al. All-solid-state Dye-sensitized Solar Cells with High Efficiency[J]. Nature,2012,485(7399):486-489.

    55. [55]

      [55] Zuo F,Williams S T,Liang P W,et al. Binary-metal Perovskites Toward High-performance Planar-heterojunction Hybrid Solar Cells[J]. Adv Mater,2014,26(37):6454-6460.

    56. [56]

      [56] Ding Y,Yao X,Zhang X,et al. Surfactant Enhanced Surface Coverage of CH3NH3PbI3-xCl<em>x Perovskite for highly Efficient Mesoscopic Solar Cells[J]. J Power Sources,2014,272:351-355.

    57. [57]

      [57] Zuo C,Ding L. An 80.11% FF Record Achieved for Perovskite Solar Cells by Using the NH4Cl Additive[J]. Nanoscale,2014,6(17):9935-9938.

    58. [58]

      [58] Chen C,Li C,Li F,et al. Efficient Perovskite Solar Cells Based on Low-temperature Solution-processed CH3NH3PbI3 Perovskite/CuInS2 Planar Heterojunctions[J]. Nanoscale Res Lett,2014,9(1):457.

    59. [59]

      [59] Wang L,Fu W,Gu Z,et al. Low Temperature Solution Processed Planar Heterojunction Perovskite Solar Cells with a CdSe Nanocrystal as an Electron Transport/extraction Layer[J]. J Mater Chem C,2014,2(43):9087-9090.

    60. [60]

      [60] Jiang Q,Sheng X,Shi B,et al. Nickel-Cathoded Perovskite Solar Cells[J]. J Am Chem Soc,2014,118(45):25878-25883.

    61. [61]

      [61] Zhang F,Yang X,Wang H,et al. Structure Engineering of Hole-conductor Free Perovskite-based Solar Cells with Low-temperature-processed Commercial Carbon Paste as Cathode[J]. ACS Appl Mater Interfaces,2014,6(18):16140-16146.

    62. [62]

      [62] Mei A,Li X,Liu L,et al. A Hole-conductor-free,fully Printable Mesoscopic Perovskite Solar Cell with High Stability[J]. Science,2014,345(6194):295-298.

    63. [63]

      [63] Jeon N J,Lee H G,Kim Y C,et al. o-Methoxy Substituents in spiro-OMeTAD for Efficient Inorganic-organic Hybrid Perovskite Solar Cells[J]. J Am Chem Soc,2014,136(22):7837-7840.

    64. [64]

      [64] Li H,Fu K,Hagfeldt A,et al. A Simple 3,4-Ethylenedioxythiophene Based Hole-transporting Material for Perovskite Solar Cells[J]. Angew Chem Int Ed Eng,2014,53(16):4085-4088.

    65. [65]

      [65] Lyu S,Han L,Xiao J,et al. Mesoscopic TiO2/CH3NH3PbI3 Perovskite Solar Cells with New Hole-transporting Materials Containing Butadiene Derivatives[J]. Chem Commun(Cambridge,UK),2014,50(52):6931-6934.

    66. [66]

      [66] Sung S D,Kang M S,Choi I T,et al. 14.8% Perovskite Solar Cells Employing Carbazole Derivatives as Hole Transporting Materials[J]. Chem Commun(Cambridge,UK),2014,50(91):14161-14163.

    67. [67]

      [67] Christians J A,Fung R C,Kamat P V. An Inorganic Hole Conductor for Organo-lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide[J]. J Am Chem Soc,2014,136(2):758-764.

    68. [68]

      [68] Liu X,Yu H,Yan L,et al. Triple Cathode Buffer Layers Composed of PCBM, C60, and LiF for High-Performance Planar Perovskite Solar Cells[J]. ACS Appl Mater Interfaces,2015,7(11):6230-6237.

    69. [69]

      [69] Bera A,Wu K,Sheikh A,et al. Perovskite Oxide SrTiO3as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells[J]. J Phys Chem C,2014,118(49):28494-28501.

    70. [70]

      [70] Hwang S H,Roh J,Lee J,et al. Size-controlled SiO2 Nanoparticles as Scaffold Layers in Thin-film Perovskite Solar Cells[J]. J Mater Chem A,2014,2(39):16429-16433.

    71. [71]

      [71] Pathak S K,Abate A,Ruckdeschel P,et al. Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2[J]. Adv Funct Mater,2014,24(38):6046-6055.

    72. [72]

      [72] Chandiran A K,Yella A,Mayer M T,et al. Sub-nanometer Conformal TiO2 Blocking Layer for High Efficiency Solid-state Perovskite Absorber Solar Cells[J]. Adv Mater,2014,26(25):4309-4312.

    73. [73]

      [73] Wang K C,Shen P S,Li M H,et al. Low-temperature Sputtered Nickel Oxide Compact thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells[J]. ACS Appl Mater Interfaces,2014,6(15):11851-11858.

    74. [74]

      [74] Liu C,Wang K,Du P,et al. High Performance Planar Heterojunction Perovskite Solar Cells with Fullerene Derivatives as the Electron Transport Layer[J]. ACS Appl Mater Interfaces,2015,7(2):1153-1159.

    75. [75]

      [75] Liu D,Yang J,Kelly T L. Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency[J]. J Am Chem Soc,2014,136(49):17116-17122.

    76. [76]

      [76] Todorov T,Gershon T,Gunawan O,et al. Perovskite-kesterite Monolithic Tandem Solar Cells with High Open-circuit Voltage[J]. Appl Phys Lett,2014,105(17):173902-173904.

    77. [77]

      [77] Brabec C J,Shaheen S E,Winder C,et al. Effect of LiF/metal Electrodes on the Performance of Plastic Solar Cells[J]. Appl Phys Lett,2002,80(7):1288-1290.

    78. [78]

      [78] Seo J,Park S,Chan Kim Y,et al. Benefits of Very Thin PCBM and LiF Layers for Solution-processed p-i-n Perovskite Solar Cells[J]. Energy Environ Sci,2014,7(8):2642-2646.

    79. [79]

      [79] Shi J,Dong J,Lv S,et al. Hole-conductor-free Perovskite Organic Lead Iodide Heterojunction Thin-film Solar Cells:High Efficiency and Junction Property[J]. Appl Phys Lett,2014,104(6):063901-063904.

    80. [80]

      [80] Etgar L,Gao P,Xue Z,et al. Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells[J]. J Am Chem Soc,2012,134(42):17396-17399.

    81. [81]

      [81] Ke W,Fang G,Wang J,et al. Perovskite Solar Cell with an Efficient TiO2 Compact Film[J]. ACS Appl Mater Interfaces,2014,6(18):15959-15965.

    82. [82]

      [82] Zimmermann E,Ehrenreich P,Pfadler T,et al. Erroneous Efficiency Reports Harm Organic Solar Cell Research[J]. Nat Photonics,2014,8(9):669-672.

    83. [83]

      [83] Unger E L,Hoke E T,Bailie C D,et al. Hysteresis and Transient Behavior in Current-voltage Measurements of Hybrid-perovskite Absorber Solar Cells[J]. Energy Environ Sci,2014,7(11):3690-3698.

    84. [84]

      [84] Snaith H J,Abate A,Ball J M,et al. Anomalous Hysteresis in Perovskite Solar Cells[J]. J Phys Chem Lett,2014,5(9):1511-1515.

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    5. [5]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    8. [8]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    16. [16]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    17. [17]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    20. [20]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

Metrics
  • PDF Downloads(1)
  • Abstract views(677)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return