Citation: YU Zonglong, JIA Chunxiao, LU Xin, HAN Haigang, XIN Bingwei. Synthesis of Ionic Liquid@TiO2 Nanocomposites and Their Photocatalytic Performance[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 459-465. doi: 10.11944/j.issn.1000-0518.2016.04.150269 shu

Synthesis of Ionic Liquid@TiO2 Nanocomposites and Their Photocatalytic Performance

  • Corresponding author: JIA Chunxiao,  XIN Bingwei, 
  • Received Date: 28 July 2015
    Available Online: 19 November 2015

    Fund Project:

  • IL@TiO2 nanocomposites were synthesized by grafting ionic liquids(ILs) onto the surface of TiO2 via —Si—O— covalent bond. The prepared nanocomposites were acharacterized by IR, thermal gravity-differential analysis and elemental analysis. [C8tespim]Br@TiO2([C8tespim]:N-3-triethoxysilypropyl-4,5-dihydroimidazole) can catalyze the degradation of methyl orange to almost colourless after being illuminated by ultraviolet light for 60 min. The superior performance of prepared nanocomposites compared to that of TiO2 nanopaticles suggests that anion-exchange can tailor the photocatalytic activity, and the activity order is [C8tespim]Br@TiO2< [C8tespim]PF6@TiO2< [C8tespim]Tf2N@TiO2(Tf2N:bis[(trifluoromethyl)sulfonyl]imide).
  • 加载中
    1. [1]

      [1] Liu K,Cao M,Jiang L,et al. Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications[J]. Chem Rev,2014,114(19):10044-10094.

    2. [2]

      [2] Zhang X,Jin M,Liu Z,et al. Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces[J]. Langmuir,2006,22(23):9477-9479.

    3. [3]

      [3] Jutz F,Andanson J,Baiker A. Ionic Liquids and Dense Carbon Dioxide:A Beneficial Biphasic System for Catalysis[J]. Chem Rev,2011,111(2):322-353.

    4. [4]

      [4] Xin B,Hao J. Reversibly Switchable Wettability[J]. Chem Soc Rev,2010,39(2):769-782.

    5. [5]

      [5] Ye Q,Gao T,Wan F,et al. Grafting Poly(Ionic Liquid) Brushes for Anti-Bacterial and Anti-Biofouling Applications[J]. J Mater Chem,2012,22(26):13123-13131.

    6. [6]

      [6] Stepnowski P,Zaleska A. Comparison of Different Advanced Oxidation Processes for the Degradation of Room Temperature Ionic Liquids[J]. J Photochem Photobiol A,2005,170(1):45-50.

    7. [7]

      [7] CHANG Rui,LI Chunxi,MENG Hong,et al. Degradation of Imidazolium-Based Ionic Liquids with A Combination of Photocatalysis and Biodegradation[J]. Chinese J Chem Eng,2011,5(9):1950-1954(in Chinese).常睿,李春喜,孟洪,等. 光催化法与生物法结合降解咪哇类离子液体[J]. 环境工程学报,2011,5(9):1950-1954.

    8. [8]

      [8] Zhai Y,Gao Y,Liu F,et al. Synthesis of Nanostructured Tio2 Particles in Room Temperature Ionic Liquid and Its Photocatalytic Performance[J]. Mater Lett,2007,61(28):5056-5058.

    9. [9]

      [9] Zhai Y,Zhang Q,Liu F,et al. Synthesis of Nanostructure Rutile Tio2 in A Carboxyl-Containing Ionic Liquid[J]. Mater Lett,2008,62(30):4563-4565.

    10. [10]

      [10] Wu Y,Guan W,Lin S. Microwave Assisted Preparation and Characterization of Ionic Liquid [Bmim]PF6 and Synthesis and Characterization of Titanium Dioxide Using [Bmim]PF6 as Medium[J]. Adv Mater Res,2011,183/184/185(5):1662-1666.

    11. [11]

      [11] XIA Xinghui,YUN Ying,LUO Juan. Effects of Anions on Rates of Photocatalytic Degradation for Surfactant[J]. J Beijing Normal Univ(Nat Sci),2000,36(1):127-131(in Chinese).夏星辉,云影,雒娟. 水环境中阴离子对表面活性剂光催化降解的影响[J]. 北京师范大学学报(自然科学版),2000,36(1):127-131.

    12. [12]

      [12] Itoh H,Naka K,Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation[J]. J Am Chem Soc,2004,126(10):3026-3027.

    13. [13]

      [13] Dieter K M,Dymek C J,Heimer N E,et al. Ionic Structure and Interactions in 1-Methyl-3-ethylimidazolium Chloride-AlCl3 Molten Salts[J]. J Am Chem Soc,1998,110(12):2722-2726.

    14. [14]

      [14] Nishida T,Tashiro Y,Yamamoto M. Physical and Electrochemical Properties of 1-Alkyl-3-Methylimidazolium Tetrafluoroborate for Electrolyte[J]. J Fluorine Chem,2003,120(2):135-141.

    15. [15]

      [15] Zhang Y R,Wan J,Ke Y Q. A Novel Approach of Preparing TiO2 Films at Low Temperature and Its Application in Photocatalytic Degradation of Methyl Orange[J]. J Hazard Mater,2010,177(1/2/3):750-754.

    16. [16]

      [16] Priya D,Modak J,Raichur A. LbL Fabricated Poly(Styrene Sulfonate)/TiO2 Multilayer Thin Films for Environmental Applications[J]. ACS Appl Mater Interfaces,2009,1(11):2684-2693.

    17. [17]

      [17] HAN Fei. The Preparation of Modified TiO2 and Its Photoehemical Catalysis Activeness Research of Cyanic Wastewater[D]. Xi'an:Chang'an University,2011(in Chinese).韩飞. 改性TiO2光催化剂的制备及对含氰废水的光催化研究[D]. 西安:长安大学,2011.

    18. [18]

      [18] QI Lifang. Preparation and Photocatalytic H2-production Performance of TiO2 Nanosheets[D]. Wuhan:Wuhan University of Technology,2012(in Chinese).亓丽芳. 二氧化钛纳米片的制备及光催化产氢性能研究[D]. 武汉:武汉理工大学,2012.

  • 加载中
    1. [1]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    2. [2]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    6. [6]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    7. [7]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    8. [8]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    9. [9]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    19. [19]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    20. [20]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

Metrics
  • PDF Downloads(2)
  • Abstract views(449)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return