Citation: CHAI Fanfan, LI Keyan, GUO Xinwen. Composition and Structure Design for High Performance Heterogeneous Fenton Catalysts[J]. Chinese Journal of Applied Chemistry, ;2016, 33(2): 133-143. doi: 10.11944/j.issn.1000-0518.2016.02.150432 shu

Composition and Structure Design for High Performance Heterogeneous Fenton Catalysts

  • Corresponding author: LI Keyan,  GUO Xinwen, 
  • Received Date: 4 December 2015
    Available Online: 11 January 2016

    Fund Project:

  • As a solution to overcome the shortcomings of homogeneous Fenton reaction, heterogeneous Fenton catalytic oxidation technology has been intensively investigated in the field of water treatment due to the advantages of high removal efficiency under wide range of pH and easy separation and reutilization. This article firstly introduces the development of heterogeneous Fenton catalytic oxidation technology for the degradation of organic pollutants, the mechanisms of heterogeneous Fenton reaction as well as the characterization and experimental methods to study the mechanisms. The categories of heterogeneous Fenton catalysts are reviewed, including iron oxides, other metal oxides, and metal organic framework materials. Particularly, the methods to improve the catalytic activity and stability of heterogeneous Fenton catalysts are discussed, which include regulating the morphology, size and pore structure of the catalyst to improve the specific surface area, loading the catalysts onto carriers with high specific surface area, compositing the catalysts with other transition metal and introducing the outfield(such as light, ultrasonic and microwave). Finally, the future development of heterogeneous Fenton catalysts is pointed out.
  • 加载中
    1. [1]

      [1] Pignatello J J,Oliveros E,Mackayc A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry[J]. Crit Rev Environ Sci Technol,2006,36(1):1-84.

    2. [2]

      [2] Fenton H J. Oxidation of Tartaric Acid in Presence of Iron[J]. J Chem Soc Trans,1894,65:899-910.

    3. [3]

      [3] Deng J,Shao Y,Gao N,et al. CoFe2O4 Magnetic Nanoparticles as a Highly Active Heterogeneous Catalyst of Oxone for the Degradation of Diclofenac in Water[J]. J Hazard Mater,2013,262:836-844.

    4. [4]

      [4] Hu X B,Liu B Z,Deng Y H,et al. Adsorption and Heterogeneous Fenton Degradation of 17α-Methyltestosterone on Nano Fe3O4/MWCNTS in Aqueous Solution[J]. Appl Catal B:Environ,2011,107(3/4):274-283.

    5. [5]

      [5] Pignatello J J. Dark and Photoassisted Fe3+-Catalyzed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide[J]. Environ Sci Technol,1992,26(5):944-951.

    6. [6]

      [6] Janzen E G,Blackburn B J. Detection and Identification of Short-Lived Free Radicals by Electron Spin Resonance Trapping Techniques(Spin Trapping)[J]. J Am Chem Soc,1968,90(21):5909-5910.

    7. [7]

      [7] Zhang L L,Nie Y L,Hu C,et al. Decolorization of Methylene Blue in LayeredManganese Oxide Suspension with H2O2[J]. J Hazard Mater,2011,190(1/2/3):780-785.

    8. [8]

      [8] Chen L W,Ma J,Li X C,et al. Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles[J]. Environ Sci Technol,2011,45(9):3925-3930.

    9. [9]

      [9] Yuan S J,Dai X H. Facile Synthesis of Sewage Sludge-derived Mesoporous Material as an Efficient and Stable Heterogeneous Catalyst for Photo-Fenton Reaction[J]. Appl Catal B:Environ,2014,154:252-258.

    10. [10]

      [10] Han T,Qu L,Luo Z,et al. Enhancement of Hydroxyl Radical Generation of a Solid State Photo-Fenton Reagent Based on Magnetite/carboxylate-rich Carbon Composites by Embedding Carbon Nanotubes as Electron Transfer Channels[J]. New J Chem,2014,38(3):942-948.

    11. [11]

      [11] Li W G,Wang Y,Irini A,et al. Effect of pH and H2O2 Dosage on Catechol Oxidation in Nano-Fe3O4 Catalyzing UV-Fenton and Identification of Reactive Oxygen Species[J]. Chem Eng J,2014,244:1-8.

    12. [12]

      [12] Li X N,Liu J Y,Rykov A I,et al. Excellent Photo-Fenton Catalysts of Fe-Co Prussian Blue Analogues and their Reaction Mechanism Study[J]. Appl Catal B:Environ,2015,179:196-205.

    13. [13]

      [13] He J,Yang X F,Men B,et al. Heterogeneous Fenton Oxidation of Catechol and 4-Chlorocatechol Catalyzed by Nano-Fe3O4:Role of the Interface[J]. Chem Eng J,2014,258:433-441.

    14. [14]

      [14] Li R C,Jin X Y,Megharaj M,et al. Heterogeneous Fenton Oxidation of 2,4-Dichlorophenol Using Iron-based Nanoparticles and Persulfate System[J]. Chem Eng J,2015,264:587-594.

    15. [15]

      [15] Chan J Y T,Ang S Y,Ye E Y,et al. Heterogeneous Photo-Fenton Reaction on Hematite (α-Fe2O3){104}, {113} and {001} Surface Facets[J]. Phys Chem Chem Phys,2015,17(38):25333-25341.

    16. [16]

      [16] Peng Q S,Zhao H Y,Qian L,et al. Design of a Neutral Photo-Electro-Fenton System with 3D-Ordered Macroporous Fe2O3/carbon Aerogel Cathode:High Activity and Low Energy Consumption[J]. Appl Catal B:Environ,2015,174:157-166.

    17. [17]

      [17] Lyu Q,Li G,Sun H Y,et al. Preparation of Magnetic Core/shell Structured Gamma-Fe2O3@Ti-tmSiO2 and Its Application for the Adsorption and Degradation of Dyes[J]. Micropor Mesopor Mater,2014,186:7-13.

    18. [18]

      [18] Cao S S,Kang F F,Li P,et al. Photoassisted Hetero-Fenton Degradation Mechanism of Acid Blue 74 by a Gamma-Fe2O3 Catalyst[J]. RSC Adv,2015,5(81):66231-66238.

    19. [19]

      [19] Li X Y,Huang Y,Li C,et al.Degradation of pCNB by Fenton Like Process Using α-FeOOH[J]. Chem Eng J,2015,260:28-36.

    20. [20]

      [20] Jusoh R,Jalil A A,Triwahyono S,et al. Photodegradation of 2-Chlorophenol over Colloidal α-FeOOH Supported Mesostructured Silica Nanoparticles:Influence of a Pore Expander and Reaction Optimization[J]. Sep Purif Technol,2015,149:55-64.

    21. [21]

      [21] Tong G X,Liu Y,Wu T,et al. High-quality Elliptical Iron Glycolate Nanosheets: Selective Synthesis and Chemical Conversion into FexOy Nanorings, Porous Nanosheets, and Nanochains with Enhanced Visible-light Photocatalytic Activity[J]. Nanoscale,2015,7(39):16493-16503.

    22. [22]

      [22] Zhou L C,Shao Y M,Liu J R,et al.Preparation and Characterization of Magnetic Porous Carbon Microspheres for Removal of Methylene Blue by a Heterogeneous Fenton Reaction[J]. ACS Appl Mater Interfaces,2014,6(10):7275-7285.

    23. [23]

      [23] Cui Z M,Chen Z,Cao C Y,et al. A Yolk-shell Structured Fe2O3@Mesoporous SiO2 Nanoreactor for Enhanced Activity as a Fenton Catalyst in Total Oxidation of Dyes[J]. Chem Commun,2013,49(23):2332-2334.

    24. [24]

      [24] Zhang G L,Qin L,Wu Y J,et al.Iron Oxide Nanoparticles Immobilized toMesoporous NH2-SiO2Spheres by Sulfonic Acid Functionalization as Highly Efficient Catalysts[J]. Nanoscale,2015,7(3):1102-1109.

    25. [25]

      [25] Zhang C,Yang H C,Wan L S,et al. Polydopamine-Coated Porous Substrates as a Platform for Mineralized β-FeOOH Nanorods with Photocatalysis Under Sunlight[J]. ACS Appl Mater Interfaces,2015,7(21):11567-11574.

    26. [26]

      [26] Zhong X,Jr J B,Duprez D,et al. Modulating the Copper Oxide Morphology and Accessibility by Using Micro-/Mesoporous SBA-15 Structures as Host Support:Effect on the Activity for the CWPO of Phenol Reaction[J]. Appl Catal B:Environ,2012,121:123-134.

    27. [27]

      [27] Wang Y C,Shen X X,Chen F. Improving the Catalytic Activity of CeO2/H2O2 System by Sulfation Pretreatment of CeO2[J]. J Mol Catal A:Chem,2014,381:38-45.

    28. [28]

      [28] Ma Z C,Wei X Y,Xin S T,et al. Hydrothermal Synthesis and Characterization of Surface-modified δ-MnO2 with High Fenton-like Catalytic Activity[J]. Catal Commun,2015,67:68-71.

    29. [29]

      [29] Sun Q,Liu M,Li K,et al. Facile Synthesis of Fe-containing Metal-Organic Frameworks as Highly Efficient Catalysts for Degradation of Phenol at Neutral pH and Ambient Temperature[J]. Cryst Eng Comm,2015,17(37):7160-7168.

    30. [30]

      [30] Ai L H,Zhang C H,Li L L,et al. Iron Terephthalate Metal-Organic Framework: Revealing the Effective Activation of Hydrogen Peroxide for the Degradation of Organic Dye under Visible Light Irradiation[J]. Appl Catal B:Environ,2014,148:191-200.

    31. [31]

      [31] Zhang C H,Ai L H and Jiang J,et al. Graphene Hybridized Photoactive Iron Terephthalate with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B under Visible Light[J]. Ind Eng Chem Res,2015,54(1):153-163.

    32. [32]

      [32] Zhang C F,Qiu L G,Ke F,et al.A Novel Magnetic Recyclable Photocatalyst Based on a Core-shell Metal-Organic Framework Fe3O4@MIL-100(Fe) for the Decolorization of Methylene Blue Dye[J]. J Mater Chem A,2013,1(45):14329-14334.

    33. [33]

      [33] Cui G H,He C H,Jiao C H,et al. Two Metal-Organic Frameworks with Unique Highconnected Binodal Network Topologies:Synthesis, Structures, and Catalytic Properties[J]. Cryst Eng Comm,2012,14(12):4210-4216.

    34. [34]

      [34] Li M,Zhao S,Peng Y F,et al. A Polythreading Array Formed by a (3,5)-Connected 3DAnionic Network and 1D Cationic Chains:Synthesis, Structure, and Catalytic Properties[J]. Dalton Trans,2013,42(26):9771-9776.

    35. [35]

      [35] Peng Y F,Zhao S,Li K,et al. Construction of Cu(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) Metal-Organic Frameworks of Bis(1,2,4-triazol-4-yl)ethan and Benzenetricarboxylate:Syntheses, Structures and Photocatalytic Properties[J]. Cryst Eng Comm,2015,17(12):2544-2552.

    36. [36]

      [36] Zhao J,Dong W W,Wu Y P,et al. Two (3,6)-Connected Porous Metal-Organic Frameworks Based on Linear Trinuclear [Co3(COO)6] and Paddlewheel Dinuclear [Cu2(COO)4] SBUs:Gas adsorption, Photocatalytic Behaviour, and Magnetic Properties[J]. J Mater Chem A,2015,3(13):6962-6969.

    37. [37]

      [37] Vu T A,Le G H,Dao C D,et al. Isomorphous Substitution of Cr by Fe in MIL-101 Framework and Its Application as a Novel Heterogeneous Photo-Fenton Catalyst for Reactive Dye Degradation[J]. RSC Adv,2014,4(78):41185-41194.

    38. [38]

      [38] Li J,Yang J,Liu Y Y,et al. Two Heterometallicorganic Frameworks Composed of Iron(Ⅲ)-salen-based Ligands and d(10) Metals:Gas Sorption and Visible-light Photocatalytic Degradation of 2-Chlorophenol[J]. Chem Eur J,2015,21(11):4413-4421.

    39. [39]

      [39] Hou L W,Zhang Q H,Jerome F,et al. Shape-controlled Nanostructured Magnetite-type Materials as Highly Efficient Fenton Catalysts[J]. Appl Catal B:Environ,2014,144:739-749.

    40. [40]

      [40] Zhang J B,Zhuang J,Gao L Z,et al. Decomposing Phenol by the Hidden Talent of Ferromagnetic Nanoparticles[J]. Chemosphere,2008,73(9):1524-1528.

    41. [41]

      [41] Matta R,Hanna K,Chiron S,et al. Fenton-like Oxidation of 2,4,6-Trinitrotoluene Using Different Iron Minerals[J]. Sci Total Environ,2007,385(1/2/3):242-251.

    42. [42]

      [42] Hermanek M,Zboril R,Medrik I,et al. Catalytic Efficiency of Iron(Ⅲ) Oxides in Decomposition of Hydrogen Peroxide:Competition Between the Surface Area and Crystallinity of Nanoparticles[J]. J Am Chem Soc,2007,129(35):10929-10936.

    43. [43]

      [43] Tekbas M,Yatmaz H C,Bektas N. Heterogeneous Photo-Fenton Oxidation of Reactive Azo Dye Solutions Using Iron Exchanged Zeolite as Catalyst[J]. Micropor Mesopor Mater,2008,115(3):594-602.

    44. [44]

      [44] Luo L,Dai C Y,Zhang A F,et al. Facile Synthesis of Zeolite-encapsulated Iron Oxide Nanoparticles as Superior Catalysts for Phenol Oxidation[J]. RSC Adv,2015,5(37):29509-29512.

    45. [45]

      [45] Luo L,Dai C Y,Zhang A F,et al. A Facile Strategy for Enhancing FeCu Bimetallic Promotion for Catalytic Phenol Oxidation[J]. Catal Sci Technol,2015,5(6):3159-3165.

    46. [46]

      [46] Wang Y B,Zhao H Y,Zhao G H. Iron-copper Bimetallic Nanoparticles Embedded within Ordered Mesoporous Carbon as Effective and Stable Heterogeneous Fenton Catalyst for the Degradation of Organic Contaminants[J]. Appl Catal B:Environ,2015,164:396-406.

    47. [47]

      [47] Lan H C,Wang A M,Liu R P,et al. Heterogeneous Photo-Fenton Degradation of Acid Red B over Fe2O3 Supported on Activated Carbon Fiber[J]. J Hazard Mater,2015,285:167-172.

    48. [48]

      [48] Ma J,Yang M X,Yu F,et al. Easy Solid-phase Synthesis of pH-insensitive Heterogeneous CNTs/FeS Fenton-like Catalyst for the Removal of Antibiotics from Aqueous Solution[J]. J Colloid Interface Sci,2015,444:24-32.

    49. [49]

      [49] Zubir N A,Yacou C,Motuzas J,et al. The Sacrificial Role of Graphene Oxide in Stabilising a Fenton-like Catalyst GO-Fe3O4[J]. Chem Commun,2015,51(45):9291-9293.

    50. [50]

      [50] Qin L,Li Z,Xu Z,et al. Organic-acid-directed Assembly of Iron-carbon Oxides Nanoparticles on Coordinatively Unsaturated Metal Sites of MIL-101 for Green Photochemical Oxidation[J]. Appl Catal B:Environ,2015,179: 500-508.

    51. [51]

      [51] Liang X L,Zhong Y H,He H P,et al. The Application of Chromium Substituted Magnetite as Heterogeneous Fenton Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes[J]. Chem Eng J,2012,191:177-184.

    52. [52]

      [52] Zhong Y H,Liang X L,He Z S,et al. The Constraints of Transition Metal Substitutions(Ti, Cr, Mn, Co and Ni) in Magnetite on its Catalytic Activity in Heterogeneous Fenton and UV/Fenton Reaction: From the Perspective of Hydroxyl Radical Generation[J]. Appl Catal B:Environ,2014,150:612-618.

    53. [53]

      [53] Pouran S R,Aziz A R A,Daud W M A W,et al. Niobium Substituted Magnetite as a Strong Heterogeneous Fenton Catalyst for Wastewater Treatment[J]. Appl Surf Sci,2015,351:175-187.

    54. [54]

      [54] Yang B,Tian Z,Wang B,et al. Facile Synthesis of Fe3O4/Hierarchical-Mn3O4/Graphene Oxide as a Synergistic Catalyst for Activation of Peroxymonosulfate for Degradation of Organic Pollutants[J]. RSC Adv,2015,5(27):20674-20683.

    55. [55]

      [55] Xu L J,Wang J L. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-like Heterogeneous Catalyst for Degradation of 4-Chlorophenol[J]. Environ Sci Technol,2012,46(18):10145-10153.

    56. [56]

      [56] Zhang X Y,Ding Y B,Tang H Q,et al. Degradation of Bisphenol A by Hydrogen Peroxide Activated with CuFeO2 Microparticles as a Heterogeneous Fenton-like Catalyst:Efficiency, Stability and Mechanism[J]. Chem Eng J,2014,236:251-262.

    57. [57]

      [57] Wang Y B,Zhao H Y,Li M F,et al. Magnetic Ordered Mesoporous Copper Ferrite as a Heterogeneous Fenton Catalyst for the Degradation of Imidacloprid[J]. Appl Catal B:Environ,2014,147:534-545.

    58. [58]

      [58] Rusevova K,Koferstein R,Rosell M,et al. LaFeO3 and BiFeO3 Perovskites as Nanocatalysts for Contaminant Degradation in Heterogeneous Fenton-like Reactions[J]. Chem Eng J,2014,239:322-331.

    59. [59]

      [59] Zhang Y F,Qiu L G,Yuan Y P,et al. Magnetic Fe3O4@C/Cu and Fe3O4@CuO Core-shell Composites Constructed from MOF-based Materials and Their Photocatalytic Properties Under Visible Light[J]. Appl Catal B:Environ,2014,144:863-869.

    60. [60]

      [60] Huang R X,Fang Z Q,Yan X M,et al. Heterogeneous Sono-Fenton Catalytic Degradation of Bisphenol A by Fe3O4 Magnetic Nanoparticles Under Neutral Condition[J]. Chem Eng J,2012,197:242-249.

    61. [61]

      [61] Huang R X,Fang Z Q,Fang X B,et al. Ultrasonic Fenton-like Catalytic Degradation of Bisphenol A by Ferroferric Oxide(Fe3O4) Nanoparticles Prepared from Steel Pickling Waste Liquor[J]. J Colloid Interface Sci,2014,436:258-266.

    62. [62]

      [62] Yu L,Wang C P,Ren X H,et al. Catalytic Oxidative Degradation of Bisphenol A Using an Ultrasonic-assisted Tourmaline-based System:Influence Factors and Mechanism Study[J]. Chem Eng J,2014,252:346-354.

    63. [63]

      [63] Yan P,Gao L B,Li W T. Microwave-enhanced Fenton-like System, Fe3O4/H2O2, for Rhodamine B Wastewater Degradation[J]. Appl Mech Mater,2014,448-453:834-837.

    64. [64]

      [64] Atta A Y,Jibril B Y,Al-Waheibi T K,et al. Microwave-enhanced Catalytic Degradation of 2-Nitrophenol on Alumina-supported Copper Oxides[J]. Catal Commun,2012,26:112-116.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(0)
  • Abstract views(835)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return