Citation:
DING Fanshu, NIE Xiaowa, LIU Min, SONG Chunshan, GUO Xinwen. Research Progress in Catalytic Conversion of Carbon Dioxide to C2+ Hydrocarbons over Fe-Based Catalysts[J]. Chinese Journal of Applied Chemistry,
;2016, 33(2): 123-132.
doi:
10.11944/j.issn.1000-0518.2016.02.150431
-
Catalytic conversion of carbon dioxide(CO2) to value-added hydrocarbons is of great environmental and social importance, which can not only reduce CO2 concentration in the atmosphere, but also conform with sustainable development strategy. This paper reviews the progress in catalytic conversion of CO2 to C2+ hydrocarbons over Fe-based catalyst. Reaction pathway and mechanism, catalyst preparation and reactor design are emphatically introduced. In addition, the future of hydrocarbons synthesis via CO2 hydrogenation is also summarized.
-
-
-
[1]
[1] International Energy Agency. CO2 Emissions from Fuel Combustion Highlights[M]. France:OECD/IEA,2013.
-
[2]
[2] LIANG Binglian,DUAN Hongmin,HOU Baolin,et al. Progress in the Catalytic Hydrogenation of Carbon Dioxide to Light Olefins[J]. Chem Ind Eng Prog,2015,34(10):3746-3754(in Chinese).梁兵连,段洪敏,侯宝林,等. 二氧化碳加氢合成低碳烯烃的研究进展[J]. 化工进展,2015,34(10):3746-3754.
-
[3]
[3] Iglesias G M,de Vries C,Claeys M,et al. Chemical Energy Storage in Gaseous Hydrocarbons via Iron Fischer Tropsch Synthesis from H2/CO2-Kinetics, Selectivity and Process Considerations[J]. Catal Today,2015,242,Part A(0):184-192.
-
[4]
[4] Song C. Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing[J]. Catal Today,2006,115(1/2/3/4):2-32.
-
[5]
[5] Hall W K,Kokes R J,Emmett P H. Mechanism Studies of the Fischer-Tropsch Synthesis. The Addition of Radioactive Methanol, Carbon Dioxide and Gaseous Formaldehyde[J]. J Am Chem Soc,1957,79(12):2983-2989.
-
[6]
[6] Dwyer D J,Somorjai G A. Hydrogenation of CO and CO2 over Iron Foils:Correlations of Rate, Product Distribution, and Surface Composition[J]. J Catal,1978,52(2):291-301.
-
[7]
[7] Riedel T,Schaub G,Jun K W,et al. Kinetics of CO2 Hydrogenation on a K-Promoted Fe Catalyst[J]. Ind Eng Chem Res,2001,40(5):1355-1363.
-
[8]
[8] Martins J,Batail N,Silva S,et al. CO2 Hydrogenation with Shape-Controlled Pd Nanoparticles Embedded in Mesoporous Silica:Elucidating Stability and Selectivity Issues[J]. Catal Commun,2015,58:11-15.
-
[9]
[9] Lin Q,Liu X Y,Jiang Y,et al. Crystal Phase Effects on the Structure and Performance of Ruthenium Nanoparticles for CO2 Hydrogenation[J]. Catal Sci Technol,2014,4(7):2058-2063.
-
[10]
[10] Owen R E,O'Byrne J P,Mattia D,et al. Cobalt Catalysts for the Conversion of CO2 to Light Hydrocarbons at Atmospheric Pressure[J]. Chem Commun,2013,49(99):11683-11685.
-
[11]
[11] Newsome D S. The Water-Gas Shift Reaction[J]. Catal Rev,1980,21(2):275-318.
-
[12]
[12] Schulz H. Short History and Present Trends of Fischer Tropsch Synthesis[J]. Appl Catal,A,1999,186(1/2):3-12.
-
[13]
[13] Chew L M,Kangvansura P,Ruland H,et al. Effect of Nitrogen Doping on the Reducibility, Activity and Selectivity of Carbon Nanotube-Supported Iron Catalysts Applied in CO2 Hydrogenation[J]. Appl Catal,A,2014,482:163-170.
-
[14]
[14] Wang H,Hodgson J,Shrestha T B,et al. Carbon Dioxide Hydrogenation to Aromatic Hydrocarbons by Using an Iron/Iron Oxide Nanocatalyst[J]. Beilstein J Nanotechnol,2014,5:760-769.
-
[15]
[15] Willauer H D,Ananth R,Olsen M T,et al. Modeling and Kinetic Analysis of CO2 Hydrogenation Using a Mn and K-Promoted Fe Catalyst in a Fixed-Bed Reactor[J]. J CO2 Util,2013,3/4:56-64.
-
[16]
[16] LIU Yekui,WANG Li,HOU Dong,et al. Study on Thermodynamics of Balanceable Reaction System for Hydrogenation of Carbon Dioxide to Light Alkenes[J]. Chinese J Catal,2004,25(3):210-218(in Chinese).刘业奎,王黎,侯栋,等. 二氧化碳加氢合成低碳烯烃反应平衡体系热力学研究[J]. 催化学报,2004,25(3):210-218.
-
[17]
[17] Wang L C,Tahvildar Khazaneh M,Widmann D,et al. TAP Reactor Studies of the Oxidizing Capability of CO2 on a Au/CeO2 Catalyst-A First Step Toward Identifying a Redox Mechanism in the Reverse Water-Gas Shift Reaction[J]. J Catal,2013,302:20-30.
-
[18]
[18] HE Xiaoxiang,GU Xiongyi,FAN Chen,et al. DFT Study of Reverse Water-Gas Shift Reaction on Fe3O4 Surface[J]. J East China Univ Sci Technol(Nat Sci Ed),2011,37(4):424-429(in Chinese).何孝祥,顾雄毅,范琛,等. Fe3O4表面逆水煤气反应的DFT研究[J]. 华东理工大学学报(自然科学版),2011,37(4):424-429.
-
[19]
[19] Saeidi S,Amin N A S,Rahimpour M R. Hydrogenation of CO2 to Value-Added Products-A Review and Potential Future Developments[J]. J CO2 Util,2014,5:66-81.
-
[20]
[20] Lee S C,Kim J S,Shin W C,et al. Catalyst Deactivation During Hydrogenation of Carbon Dioxide:Effect of Catalyst Position in the Packed Bed Reactor[J]. J Mol Catal A-Chem,2009,301(1/2):98-105.
-
[21]
[21] Lo J M H,Ziegler T. A First-Principle Study of Chain Propagation Steps in the Fischer-Tropsch Synthesis on Fe(100)[J]. J Phys Chem C,2008,112(35):13681-13691.
-
[22]
[22] Cheng J,Hu P,Ellis P,et al. Density Functional Theory Study of Iron and Cobalt Carbides for Fischer-Tropsch Synthesis[J]. J Phys Chem C,2009,114(2):1085-1093.
-
[23]
[23] Niemantsverdriet J W,Van der Kraan A M,Van Dijk W L,et al. Behavior of Metallic Iron Catalysts During Fischer-Tropsch Synthesis Studied with Moessbauer Spectroscopy, X-Ray Diffraction, Carbon Content Determination, and Reaction Kinetic Measurements[J]. J Phys Chem Lett,1980,84(25):3363-3370.
-
[24]
[24] Riedel T,Schulz H,Schaub G,et al. Fischer-Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases:The Episodes of Formation of the Fischer-Tropsch Regime and Construction of the Catalyst[J]. Top Catal,2003,26(1/2/3/4):41-54.
-
[25]
[25] Bae J W,Park S J,Lee Y J,et al. Effects of Reaction Variables on Fischer Tropsch Synthesis with co-Precipitated K/FeCuAlOx Catalysts[J]. Catal Lett,2011,141(6):799-807.
-
[26]
[26] Ding M,Yang Y,Wu B,et al. Transformation of Carbonaceous Species and Its Influence on Catalytic Performance for Iron-Based Fischer Tropsch Synthesis Catalyst[J]. J Mol Catal A-Chem,2011,351:165-173.
-
[27]
[27] De Smit E,Cinquini F,Beale A M,et al. Stability and Reactivity of ε-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis:Controlling μ(C)[J]. J Am Chem Soc,2010,132(42):14928-14941.
-
[28]
[28] Mogorosi R P,Fischer N,Claeys M,et al. Strong-Metal-Support Interaction by Molecular Design:Fe-Silicate Interactions in Fischer Tropsch Catalysts[J]. J Catal,2012,289:140-150.
-
[29]
[29] Yang C,Zhao H,Hou Y,et al. Fe5C2 Nanoparticles:A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis[J]. J Am Chem Soc,2012,134(38):15814-15821.
-
[30]
[30] HUANG Zhier,LI Zhe. Investigation on the Chemical State of Fe Catalysts for Fischer-Tropsch Synthesis[J]. J Fuel Chem Technol,1988,16(4):313-320(in Chinese).黄止而,李哲. FT合成铁催化剂化学形态的研究[J]. 燃料化学学报,1988,16(4):313-320.
-
[31]
[31] HOU Wenjuan,WU Baoshan,AN Xia,et al. Effect of K on Slurry Fischer-Tropsch Synthesis over Fe-Cu-K-SiO2 Catalysts[J]. J Fuel Chem Technol,2008,36(2):186-191(in Chinese).侯文娟,吴宝山,安霞,等. 浆态床F-T合成Fe/Cu/K/SiO2催化剂中K助剂作用的研究[J]. 燃料化学学报,2008,36(2):186-191.
-
[32]
[32] Liu K,Suo H,Zhang C,et al. An Active Fischer-Tropsch Synthesis FeMo/SiO2 Catalyst Prepared by a Modified Sol-Gel Technique[J]. Catal Commun,2010,12(2):137-141.
-
[33]
[33] Sai Prasad P S,Bae J W,Jun K-W,et al. Fischer Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-based Catalysts[J]. Catal Surv Asia,2008,12(3):170-183.
-
[34]
[34] ZHAO Le. Progress of Fe-Based Catalysts in Fischer-Tropsch Synthesis[J]. J Zhejiang Univ Technol,2008,36(6):642-647(in Chinese).赵乐. Fischer-Tropsch合成铁基催化剂研究进展[J]. 浙江工业大学学报,2008,36(6):642-647.
-
[35]
[35] WANG Guiru,WANG Anjie,LIU Jing,et al. Katalyst and Katalysis[M]. Dalian:Dalian University of Technology Press,2000(in Chinese).王桂茹,王安杰,刘靖,等. 催化剂与催化作用[M]. 大连:大连理工出版社,2000.
-
[36]
[36] Hou W,Wu B,An X,et al. Effect of the Ratio of Precipitated SiO2 to Binder SiO2 on Iron-Based Catalysts for Fischer Tropsch Synthesis[J]. Catal Lett,2007,119(3/4):353-360.
-
[37]
[37] Wan H,Wu B,Xiang H,et al. Fischer Tropsch Synthesis:Influence of Support Incorporation Manner on Metal Dispersion, Metal Support Interaction, and Activities of Iron Catalysts[J]. ACS Catal,2012,2(9):1877-1883.
-
[38]
[38] Yan S R,Jun K W,Hong J S,et al. Promotion Effect of Fe-Cu Catalyst for the Hydrogenation of CO2 and Application to Slurry Reactor[J]. Appl Catal,A,2000,194/195:63-70.
-
[39]
[39] Ding F,Zhang A,Liu M,et al. Effect of SiO2-Coating of FeK/Al2O3 Catalysts on Their Activity and Selectivity for CO2 Hydrogenatio to Hydrocarbons[J]. RSC Adv,2014,4(17):8930-8938.
-
[40]
[40] Ding F,Zheng B,Song C,et al. Modification of Fe-K/Al2O3 Catalysts with TEOS for Carbon Dioxide Hydrogenation into Hydrocarbons[J]. Prepr Symp-Am Chem Soc,Div Fuel Chem,2012,57(1):444-445.
-
[41]
[41] Kou Y,Suo Z H,Niu J Z,et al. Surface Coordinate Geometry of Iron Catalysts-Hydrogenation of CO2 over Fe/ZrO2 Prepared by a Novel Method[J]. Catal Lett,1995,35(3/4):271-277.
-
[42]
[42] Wang J,You Z,Zhang Q,et al. Synthesis of Lower Olefins by Hydrogenation of Carbon Dioxide over Supported Iron Catalysts[J]. Catal Today,2013,215:186-193.
-
[43]
[43] Dry M E,Shingles T,Boshoff L J,et al. Heats of Chemisorption on Promoted Iron Surfaces and the Role of Alkali in Fischer-Tropsch Synthesis[J]. J Catal,1969,15(2):190-199.
-
[44]
[44] XU Longya,WANG Qingxia,LIN Liwu,et al. Study of Fe/Silicalite-2 Catalyst for Producing Light Olefines from CO2 Hydrogenation[J]. J Fuel Chem Technol,1997,25(2):170-174(in Chinese).徐龙伢,王清遐,林励吾,等. Fe/Silicalite-2催化剂表面CO2加氢反应性能的研究[J]. 燃料化学学报,1997,25(2):170-174.
-
[45]
[45] XU Longya,WANG Qingxia,LIN Liwu,et al. Study of Fe/Silicalite-2 Catalyst for CO2 Hydrogenation to Light Olefins Ⅲ.Catalytic Performance of K-Fe-MnO/Silicalite-2[J]. Nat Gas Chem Ind,1997,22(4):6-10(in Chinese).徐龙伢,王清遐,林励吾,等. CO2加氢制低碳烯烃的Fe/Silicalite催化剂研究Ⅲ.K-Fe-MnO/Silicalite-2催化剂性能考察[J]. 天然气化工,1997,22(4):6-10.
-
[46]
[46] Nam S S,Kim H,Kishan G,et al. Catalytic Conversion of Carbon Dioxide into Hydrocarbons over Iron Supported on Alkali Ion-Exchanged Y-zeolite Catalysts[J]. Appl Catal,A,1999,179(1/2):155-163.
-
[47]
[47] Huo C F,Wu B S,Gao P,et al. The Mechanism of Potassium Promoter:Enhancing the Stability of Active Surfaces[J]. Angew Chem Int Edit,2011,50(32):7403-7406.
-
[48]
[48] DING Fanshu. Investigation of Iron-Based Catalysts for C5+ Hydrocarbons Synthesis from CO2 Hydrogenation[D]. Dalian: Dalian University of Technology,2014(in Chinese).丁凡舒. 二氧化碳加氢合成C5+烃反应中铁基催化剂的性能研究[D]. 大连:大连理工大学,2014.
-
[49]
[49] Abbott J,Clark N J,Baker B G. Effects of Sodium, Aluminium and Manganese on the Fischer-Tropsch Synthesis over Alumina-Supported Iron Catalysts[J]. App Catal,1986,26:141-153.
-
[50]
[50] Xu L,Wang Q,Liang D,et al. The Promotions of MnO and K2O to Fe/silicalite-2 Catalyst for the Production of Light Alkenes from CO2 Hydrogenation[J]. Appl Catal,A,1998,173(1):19-25.
-
[51]
[51] Li T,Yang Y,Zhang C,et al. Effect of Manganese on an Iron-Based Fischer Tropsch Synthesis Catalyst Prepared from Ferrous Sulfate[J]. Fuel,2007,86(7/8):921-928.
-
[52]
[52] Al-Dossary M,Ismail A A,Fierro J L G,et al. Effect of Mn Loading onto MnFeO Nanocomposites for the CO2 Hydrogenation Reaction[J]. Appl Catal,B,2015,165:651-660.
-
[53]
[53] Li S,Krishnamoorthy S,Li A,et al. Promoted Iron-Based Catalysts for the Fischer Tropsch Synthesis:Design, Synthesis, Site Densities, and Catalytic Properties[J]. J Catal,2002,206(2):202-217.
-
[54]
[54] King D L,Faz C. Desulfurization of Tier 2 Gasoline by Divalent Copper-Exchanged Zeolite Y[J]. Appl Catal,A,2006,311:58-65.
-
[55]
[55] ZHENG Bin,ZHANG Anfeng,LIU Min,et al. Properties of the Nano-Particle Fe-Based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons[J]. Acta Phys-Chim Sin,2012,28(8):1943-1950(in Chinese).郑斌,张安峰,刘民,等. 纳米铁基催化剂在CO2加氢制烃中的性能[J]. 物理化学学报,2012,28(8):1943-1950.
-
[56]
[56] ZHENG Bin. The Synthesis and Properties of the Fe-Based Catalyst for the Hydrogenation of Carbon Dioxide to Hydrocarbons[D]. Dalian:Dalian University of Technology,2012(in Chinese).郑斌. 二氧化碳加氢制烃类铁基催化剂的制备及性能[D]. 大连:大连理工大学,2012.
-
[57]
[57] Schulz H,Riedel T,Schaub G. Fischer-Tropsch Principles of co-Hydrogenation on Iron Catalysts[J]. Top Catal,2005,32(3/4):117-124.
-
[58]
[58] Riedel T,Claeys M,Schulz H,et al. Comparative Study of Fischer-Tropsch Synthesis with H2/CO and H2/CO2Syngas Using Fe- and Co-based Catalysts[J]. Appl Catal,A,1999,186(1/2):201-213.
-
[59]
[59] Jun K W,Lee S J,Kim H,et al. Support Effects of the Promoted and Unpromoted Iron Catalysts in CO2 vHydrogenation[M]. Studies in Surface Science and Catalysis. Elsevier,1998.
-
[60]
[60] ZHANG Su,WANG Chengyu,PAN Lijin,et al. 57Fe Mossbauer Spectroscopy of Supported Fischer-Tropsch Iron Catalystsp[J]. J Fuel Chem Technol,1988,16(4):289-297(in Chinese).章素,王承玉,潘立金,等. 57Fe穆斯堡尔谱研究费-托合成铁催化剂I.担载型铁催化剂制备条件的考察[J]. 燃料化学学报,1988,16(4):289-297.
-
[61]
[61] Dorner R W,Hardy D R,Williams F W,et al. K and Mn Doped Iron-Based CO2 Hydrogenation Catalysts:Detection of KAlH4 as Part of the Catalyst's Active Phase[J]. Appl Catal,A,2010,373(1/2):112-121.
-
[62]
[62] Ding F,Zhang A,Liu M,et al. CO2 Hydrogenation to Hydrocarbons over Iron-based Catalyst:Effects of Physicochemical Properties of Al2O3 Supports[J]. Ind Eng Chem Res,2014,53(45):17563-17569.
-
[63]
[63] BAI Rongxian,TAN Yisheng,HAN Yizhuo. Hydrogenation of Carbon Dioxide to Isoalkanes over Fe-Zn-Zr/Zeolite Composite Catalysts I. Effects of Zeolites on Catalytic Performance of the Catalysts[J]. Chinese J Catal,2004,25(3):223-226(in Chinese).白容献,谭猗生,韩怡卓. Fe-Zn-Zr/分子筛复合催化剂上CO2加氢合成异构烷烃I.不同分子筛对催化剂性能的影响[J]. 催化学报,2004,25(3):223-226.
-
[64]
[64] Hu B,Frueh S,Garces H F,et al. Selective Hydrogenation of CO2 and CO to Useful Light Olefins over Octahedral Molecular Sieve Manganese Oxide Supported Iron Catalysts[J]. Appl Catal,B,2013,132/133:54-61.
-
[65]
[65] LI Jie. CO2 Hydrogenation to Hydrocarbons over Fe Supported on Ordered Mesoporous Carbons[D]. Dalian:Dalian University of Technology,2014(in Chinese).李捷. 碳材料负载Fe催化CO2加氢制烃类的研究[D]. 大连:大连理工大学,2014.
-
[66]
[66] MU Dengyou. Hydrogenation of CO2 to Hydrocarbons over Iron Nanoparticles Confined in Nanoporous Carbons[D]. Dalian:Dalian University of Technology,2014(in Chinese).慕灯友. Fe@C催化二氧化碳加氢制烃类的研究[D]. 大连:大连理工大学,2014.
-
[67]
[67] Fujimoto K,Yokota K. Effective Hydrogenation of Carbon-Dioxide with 2-Stage Reaction System[J]. Chem Lett,1991,4:559-562.
-
[68]
[68] Kim J S,Lee S,Lee S B,et al. Performance of Catalytic Reactors for the Hydrogenation of CO2 to Hydrocarbons[J]. Catal Today,2006,115(1/2/3/4):228-234.
-
[69]
[69] Kang S H,Bae J W,Cheon J Y,et al. Catalytic Performance on Iron-Based Fischer Tropsch Catalyst in Fixed-Bed and Bubbling Fluidized-Bed Reactor[J]. Appl Catal,B,2011,103(1/2):169-180.
-
[70]
[70] Satthawong R,Koizumi N,Song C,et al. Light Olefin Synthesis from CO2 Hydrogenation over K-promoted Fe-Co Bimetallic Catalysts[J]. Catal Today,2015,251:34-40.
-
[71]
[71] Satthawong R,Koizumi N,Song C,et al. Comparative Study on CO2 Hydrogenation to Higher Hydrocarbons over Fe-Based Bimetallic Catalysts[J]. Top Catal,2014,57(6/7/8/9):588-594.
-
[72]
[72] Satthawong R,Koizumi N,Song C,et al. Bimetallic Fe-Co Catalysts for CO2Hydrogenation to Higher Hydrocarbons[J]. J CO2 Util,2013,3/4:102-106.
-
[73]
[73] Farsi M,Jahanmiri A. Application of Water Vapor-Permselective Alumina Silica Composite Membrane in Methanol Synthesis Process to Enhance CO2 Hydrogenation and Catalyst Life Time[J]. J Ind Eng Chem,2012,18(3):1088-1095.
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[5]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[6]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[7]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[8]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[9]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[13]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[14]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[15]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[16]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[19]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[20]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(809)
- HTML views(150)