Citation: TUERDI Ailijiang, CHEN Pei, ABDUKAYUM Abdukader, TUERHONG Muhetaer. Preparation and Photocatalytic Kinetic of Bismuth Doped Mesoporous Titanium Dioxide[J]. Chinese Journal of Applied Chemistry, ;2016, 33(2): 213-220. doi: 10.11944/j.issn.1000-0518.2016.02.150218 shu

Preparation and Photocatalytic Kinetic of Bismuth Doped Mesoporous Titanium Dioxide

  • Corresponding author: ABDUKAYUM Abdukader, 
  • Received Date: 29 June 2015
    Available Online: 13 November 2015

    Fund Project:

  • A Bi doped mesoporous TiO2 photocatalyst was prepared by solution impregnation method with mesoporous KIT-6 sieve as the carrier. The crystal structure and morphology of the photocatalyst was characterized with XRD, TEM, SEM, XPS, Raman spectrometer and physical adsorption instrument. Photocatalytic activity of the photocatalyst was investigated through degradation of Rhodamine B by UV-visible absorption spectrometry. The amount of doped Bi for impact on photocatalytic reaction rate and the kinetics of the photocatalytic degradation were studied. The results show that the Bi doped mesoporous TiO2 have a narrow pore size distribution(3~4 nm), and the light absorption band of photocatalyst is extended to visible light area. Therefore, the photocatalytic activity of Bi doped mesoporous TiO2 is significantly higher than that of commercial TiO2(P25). The photocatalytic degradation reaction of Rhodamine B is corresponding to an equation of first order reaction. The photocatalytic reaction rate constant increases with increasing amount of the doping Bi.
  • 加载中
    1. [1]

      [1] Song M X,Bian L,Zou T L,et al. Surface Potential and Photocatalytic Activity of Rare Earths Doped TiO2[J]. J Rare Earths,2008,26(5):693-699.

    2. [2]

      [2] Fujishima A,Zhang X T,Tryk D A.TiO2 Photocatalysis and Related Surface Phenomena[J].Surf Sci Rep,2008,63:515-582.

    3. [3]

      [3] Pelaez M,Nolen N T,Pillai S C,et al. A Review on the Visible Light Active TiO2 Photocatalysts for Environmental Applications[J]. Appl Catal B:Environ,2012,125:331-349.

    4. [4]

      [4] XIE Yifei,FANG Ying,LI Zhen. Research Advance of Metal Nonmetal Co-doped TiO2 Nanotubes[J]. New Chem Mater,2013,41(1):133-135(in Chinese).谢一飞,方莹,李镇. 金属非金属共掺杂TiO2纳米管的研究进展[J]. 化工新型材料,2013,41(1):133-135.

    5. [5]

      [5] SHANG Pengbo,ZHENG Yuying,JI Feng,et al. Zinc Doped TiO2 Mesoporous Hollow Microspheres:Preparation and Photocatalytic Activity[J]. Chinese J Inorg Chem,2014,30(10):2323-2331(in Chinese).尚鹏博,郑玉婴,冀峰,等. 锌离子掺杂的二氧化钛介孔空心微球的制备及光催化性能[J]. 无机化学学报,2014,30(10):2323-2331.

    6. [6]

      [6] TANG Shouqiang,HE Jingping,ZHANG Zhao. Synthesis and Photocatalytic Activity of Fe-doped mesoporous TiO2 Powder[J]. J Chinese Ceram Soc,2012,40(7):950-956(in Chinese).唐守强,何菁萍,张昭. 铁掺杂介孔二氧化钛的制备及其光催化性能[J]. 硅酸盐学报,2012,40(7):950-956.

    7. [7]

      [7] RUAN Xinchao,WANG Wenjing,AI Rui,et al. Preparation and Photocatalysis Properties of Ni-modified TiO2[J]. Environ Sci Technol,2012,35(11):60-64(in Chinese).阮新潮,王文静,艾锐,等. 镍掺杂二氧化钛光催化剂的制备与光催化性能研究[J]. 环境科学与技术,2012,35(11):60-64.

    8. [8]

      [8] Ismail A Adel. Facile Synthesis of Mesoporous Ag-loaded TiO2 Thin Film and Its Photocatalytic Properties[J]. Micropor Mesopor Mater,2012,149:69-75.

    9. [9]

      [9] Police A,Kumar R,Basavaraju Srinivas,et al. Preparation and Characterization of Bi-doped TiO2 and Its Solar Photocatalytic Activity for the Degradation of Isoproturon Herbicide[J]. Mater Res Bull,2011,46:1766-1771.

    10. [10]

      [10] Shamaila S,Leghari S A K,Chen F,et al. Bismuth-Doped Ordered Mesoporous TiO2:Visible-Light Catalyst for Simultaneous Degradation of Phenol and Chromium[J]. Chem Eur J,2010,16:13795-13804.

    11. [11]

      [11] CUI Yumin,HONG Wenshan,LI Huiquan,et al, Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 Toward Methyl Orange and Phenol[J]. Chinese J Inorg Chem,2014,30(2):431-441(in Chinese).崔玉民,洪文珊,李慧泉. BiOI/Bi2WO6对甲基橙和苯酚的光催化降解及光催化机理[J]. 无机化学学报,2014,30(2):431-441.

    12. [12]

      [12] Pian X T,Lin B Z,Chen Y L. Nanocomposite TiO2/Bi-Doped Hexaniobate with Visible-Light Photocatalytic Activity[J]. Chem Phys Chem C,2011,115(14):6531-6539.

    13. [13]

      [13] WU Ziwei,LV Xiaomeng,SHEN Jiayu,et al. BiFeO3 Nanoparticles:Space Selective Photochemical Reduction of Ag and Photocatalytic Activity[J]. Chinese J Inorg Chem,2014,30(3):492-498(in Chinese).吴子伟,吕晓萌,沈佳宇. BiFeO3空间选择性光化学还原Ag及光催化活性[J]. 无机化学学报,2014,30(3):492-498.

    14. [14]

      [14] Perathoner S,Lanzafame P,Passalacqua R,et al. Use of Mesoporous SBA-15 for Nanostructuring Titania for Photocatalytic Applications[J]. Micropor Mesopor Mater,2006,90:347-361.

    15. [15]

      [15] XU Yuran,WANG Lingling,YUAN Enlin,et al. Preparation of Highly Dispersed Mn-KIT-6 Catalysts and Their Catalysis Performance[J]. Acta Chim Sin,2011,69(13):1517-1523(in Chinese).徐玉然,王灵灵,原恩临. 高分散Mn-KIT-6催化剂的制备及催化性能研究[J]. 化学学报,2011,69(13):1517-1523.

    16. [16]

      [16] Wu Y Q,Lu G X,Li S B. The Doping Effect of Bi on TiO2 for Photocatalytic Hydrogen Generation and Photodecolorization of Rhodamine B[J]. Phys Chem C,2009,113:9950-9955.

    17. [17]

      [17] Zhao W X,Wang X T,Sang H X,et al. Synthesis of Bi-doped TiO2 Nanotubes and Enhanced Photocatalytic Activity for Hydrogen Evolution from Glycerol Solution[J]. Chinese J Chem,2013,31:415-420.

    18. [18]

      [18] SANG Huanxin,TIAN Ye,WANG Xitao,et al. Photocatalytic H2 Evolution from Glycerol Solution over Bi3+-doped TiO2 Nanoparticles[J]. J Inorg Mater,2012,27(12):1283-1288(in Chinese).桑换新,田野,王希涛,等. Bi掺杂纳米TiO2光催化甘油水溶液制氢性能研究[J]. 无机材料学报,2012,27(12):1283-1288.

    19. [19]

      [19] Kruk M,Jaroniec M. Gas Adsorption Characterization of Ordered Organicinorganic Nanocomposite Materials[J]. Chem Mater,2001,13:3169-3183.

    20. [20]

      [20] Zhang M Y,Shao C L,Guo Z,et al. Hierarchical Nanostructures of Copper(Ⅱ) Phthalocyanine on Electrospun TiO2 Nanofibers:Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties[J]. Appl Mater Interfaces,2011,3:369-377.

    21. [21]

      [21] Bagwasi,S Bao Z T,Jin L Z,et al. Synthesis Characterization and Application of Bismuth and Boron Co-doped TiO2[J]. Chem Eng J,2013,21:108-118.

    22. [22]

      [22] Bagwasi S,Yu X N,Nasir M,et al. The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts[J]. Appl Surf Sci,2013,264:139-147.

    23. [23]

      [23] Guo H W,Zheng S K,Peng F W,et al. Electronic and Optical Properties Analysis on Bi/N-codoped Anatase TiO2[J]. Solid State Commun,2013,163:7-10.

    24. [24]

      [24] Rasoulifard M,Fazli M,Eskandarian M. Kinetic Study for Photocatalytic Degradation of Direct Red23 in UV-LED/nano-TiO2/S2O2-8 Process:Dependence of Degradationkinetic on Operational Parameters[J]. J Ind Eng Chem,2014,20:3695-3702.

    25. [25]

      [25] Zhang Q,Jing Y H,Shiue A,et al. Photocatalytic Degradation of Malathion by TiO2 and Pt-TiO2 Nanotube Photocatalyst and Kinetic Study[J]. J Environ Sci Health B,2013,48(8):686-692.

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    3. [3]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    4. [4]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    7. [7]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(435)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return