Citation: CHEN Kunfeng, XUE Dongfeng. Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems[J]. Chinese Journal of Applied Chemistry, ;2016, 33(1): 18-24. doi: 10.11944/j.issn.1000-0518.2016.01.150308 shu

Evaluation of Specific Capacitance of Colloidal Ionic Supercapacitor Systems

  • Corresponding author: XUE Dongfeng, 
  • Received Date: 25 August 2015
    Available Online: 16 November 2015

    Fund Project:

  • Although they show high power density, supercapacitors often suffer from low energy density. As a new kind of supercapacitors, colloidal ion supercapacitors that include various transition metal cations and rare earth cations, such as Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Sn2+, Sn4+, La3+, Ce3+, Er3+, Yb3+, etc, show both high energy density and high power density. Proper evaluation of specific capacitance of colloidal ion supercapacitors can deepen our understanding of the electrochemical mechanism of electroactive cations in pseudocapacitive electrode materials. This review firstly outlines the basic concept of colloidal ion supercapacitors and in situ coprecipitation synthesis methods. Then the specific capacitance based on active cations(named cationic capacitance) is used to evaluate the performance of colloidal ion supercapacitors. We then calculate the specific capacitances on the basis of hydroxides and oxides(named hydroxide capacitance and oxide capacitance), which are traditional evaluation methods for supercapacitors. Compared with three kinds of specific capacitances, cationic capacitance can really reflect the intrinsic reaction mechanism of pseudocapacitive materials. It is expected that colloidal ion supercapacitors can overcome the technical bottleneck of the existing electrochemical energy storage devices and be the next-generation high-energy storage devices.
  • 加载中
    1. [1]

      [1] Chen K,Song S,Liu F,et al.Structural Design of Graphene for Electrochemical Energy Storage[J].Chem Soc Rev,2015,44(17):6230-6257.

    2. [2]

      [2] XU Guorong,LI Yubing,DONG Wenhao,et al.Preparation of Mn3O4 Nanoparticles in Alkaline Solution and Their Application in Supercapacitor[J].Chinese J Appl Chem,2015,32(6):701-707(in Chinese).徐国荣,李钰冰,董文豪,等.碱性介质中制备纳米四氧化三锰及其超级电容特性[J].应用化学,2015,32(6):701-707.

    3. [3]

      [3] Augustyn V,Simon P,Dunn B.Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage[J].Energy Environ Sci,2014,7(5):1597-1614.

    4. [4]

      [4] CHEN Kunfeng,XUE Dongfeng.Chemical Reaction and Crystallization Control on Electrode Materials for Electrochemical Energy Storage[J].Sci China:Technol Sci,2015,45(1):36-49(in Chinese).陈昆峰,薛冬峰.化学反应和结晶控制的电化学储能电极材料[J].中国科学:技术科学,2015,45(1):36-49.

    5. [5]

      [5] HU Xiaozhou,WANG Jing,TANG Jing.Synthesis of Mixture Salt Activated Porous Carbon from Scaphium Scaphigerum and Its Performance as Super Capacitor Electrode Material[J].Chinese J Appl Chem,2015,32(5):591-596(in Chinese).呼小洲,王静,唐靖.混合盐活化胖大海基多孔炭的制备及超级电容器电极材料性能[J].应用化学,2015,32(5):591-596.

    6. [6]

      [6] CHEN Kunfeng,YANG Yangyang,CHEN Xu,et al.Study of Transition Metal-Based Material for Electrochemical Energy Storage[J].J He'nan Univ(Nat Sci),2014,44(4):398-415(in Chinese).陈昆峰,杨阳阳,陈旭,等.过渡金属材料的电化学储能性能研究[J].河南大学学报(自然科学版),2014,44(4):398-415.

    7. [7]

      [7] LIU Yaliu,YUAN Zhongzhi,LIU Liling.Preparation and Electrochemical Characteristics of Manganese Dioxide/graphene Composite Paper Electrode[J].Chinese J Appl Chem,2015,32(7):843-848(in Chinese).刘亚柳,袁中直,刘俐伶.二氧化锰/石墨烯纸电极的制备及其电化学性能[J].应用化学,2015,32(7):843-848.

    8. [8]

      [8] Chen K F,Xue D F.Rare Earth and Transitional Metal Colloidal Supercapacitors[J].Sci China Technol Sci,2015,58:1768-1778.

    9. [9]

      [9] Chen K F,Xue D F.Searching for Electrode Materials with High Electrochemical Reactivity[J].J Materiomics,2015,1(3):170-1787.

    10. [10]

      [10] Lu Q,Chen J,Xiao J.Nanostructured Electrodes for High-Performance Pseudocapacitors[J].Angew Chem Int Ed,2013,52(7):1882-1889.

    11. [11]

      [11] Chen K F,Xue D F.Ionic Supercapacitor Electrode Materials:A System-Level Design of Electrode and Electrolyte for Transforming Ions into Colloids[J].Colloid Interface Sci Commun,2014,1(1):39-42.

    12. [12]

      [12] Chen X,Chen K F,Wang H,et al.Crystallization of Fe3+ in an Alkaline Aqueous Pseudocapacitor System[J].Cryst Eng Comm,2014,16(29):6707-6715.

    13. [13]

      [13] Chen K F,Xue D F.Crystallization of Tin Chloride for Promising Pseudocapacitor Electrode[J].CrystEngComm,2014,16(21):4610-4618.

    14. [14]

      [14] Chen K F,Xue D F.YbCl3 Electrode in Alkaline Aqueous Electrolyte with High Pseudocapacitance[J].J Colloid Interface Sci,2014,424(1):84-89.

    15. [15]

      [15] Chen K F,Xue D F.Formation of Electroactive Colloids via In-Situ Coprecipitation under Electric Field:Erbium Chloride Alkaline Aqueous Pseudocapacitor[J].J Colloid Interface Sci,2014,430(1):265-271.

    16. [16]

      [16] Chen K F,Xue D F.Water-Soluble Inorganic Salt with Ultrahigh Specific Capacitance:Ce (NO3)3 Can be Designed as Excellent Pseudocapacitor Electrode[J].J Colloid Interface Sci,2014,416(1):172-176.

    17. [17]

      [17] Chen K F,Xue D F,Komarneni S.Colloidal Pseudocapacitor:Nanoscale Aggregation of Mn Colloids from MnCl2 under Alkaline Condition[J].J Power Sources,2015,279(1):365-371.

    18. [18]

      [18] Chen K F,Yang Y,Li K,et al.CoCl2 Designed as Excellent Pseudocapacitor Electrode Materials[J].ACS Sustain Chem Eng,2014,2(3):440-444.

    19. [19]

      [19] Chen X,Chen K F,Wang H,et al.Functionality of Fe (NO3)3 Salts as Both Positive and Negative Pseudocapacitor Electrodes in Alkaline Aqueous Electrolyte[J].Electrochim Acta,2014,147(1):216-224.

    20. [20]

      [20] Chen X,Chen K F,Wang H,et al.A Colloidal Pseudocapacitor:Direct Use of Fe (NO3)3 in Electrode can Lead to a High Performance Alkaline Supercapacitor System[J].J Colloid Interface Sci,2015,444(1):49-57.

    21. [21]

      [21] Chen K F,Yin S,Xue D F.Binary AxB1-x Ionic Alkaline Pseudocapacitor System Involving Manganese,Iron,Cobalt,and Nickel:Formation of Electroactive Colloids via In-Situ Electric Field Assisted Coprecipitation[J].Nanoscale,2015,7(3):1161-1166.

    22. [22]

      [22] Chen K F,Song S,Li K,et al.Water-Soluble Inorganic Salts with Ultrahigh Specific Capacitance:Crystallization Transformation Investigation of CuCl2 Electrodes[J].CrystEngComm,2013,15(47):10367-10373.

    23. [23]

      [23] Lu Z,Chang Z,Zhu W,et al.Beta-phased Ni (OH)2 Nanowall Film with Reversible Capacitance Higher than Theoretical Faradic Capacitance[J].Chem Commun,2011,47(34):9651-9653.

    24. [24]

      [24] Sathiya M,Rousse G,Ramesha K,et al.Reversible Anionic Redox Chemistry in High-Capacity Layered-Oxide Electrodes[J].Nat Mater,2013,12(9):827-835.

    25. [25]

      [25] Simon P,Gogotsi Y.Materials for Electrochemical Capacitors[J].Nat Mater,2008,7(11):845-854.

    26. [26]

      [26] Beidaghi M,Gogotsi Y.Capacitive Energy Storage in Micro-Scale Devices:Recent Advances in Design and Fabrication of Microsupercapacitors[J].Energy Environ Sci,2014,7(3):867-884.

    27. [27]

      [27] Aravindan V,Gnanaraj J,Lee Y,et al.Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors[J].Chem Rev,2014,114(23):11619-11635.

  • 加载中
    1. [1]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    8. [8]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    9. [9]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    10. [10]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    11. [11]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-0. doi: 10.3866/PKU.WHXB202404006

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Lei WangPanpan ZhangZhiyuan GuoJing WangJie MaZhi-yong Ji . Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches. Acta Physico-Chimica Sinica, 2026, 42(1): 100127-0. doi: 10.1016/j.actphy.2025.100127

    16. [16]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    17. [17]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    18. [18]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

Metrics
  • PDF Downloads(0)
  • Abstract views(520)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return