Citation: WEI Xiao-Ping, LIANG Shun-Chao, HUANG Wen-Gang, LI Jian-Ping. Study on Molecularly Imprinted Sensor Based on Photocurrent Response for Ni-complex[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 348-354. doi: 10.11895/j.issn.0253-3820.150918 shu

Study on Molecularly Imprinted Sensor Based on Photocurrent Response for Ni-complex

  • Corresponding author: LI Jian-Ping, 
  • Received Date: 16 October 2015
    Available Online: 24 November 2015

    Fund Project: 本文系国家自然科学基金(No.21375031) (No.21375031)广西自然科学基金(Nos.2015GXNSFFA139005,2015GXNSFAA139029)项目资助 (Nos.2015GXNSFFA139005,2015GXNSFAA139029)

  • A novel molecularly imprinted sensor for Ni2+ detection was fabricated based on photocurrent method. CdTe quantum dot (QDs) was selected as photoelectric material and modified in ITO electrode, then the nickel-1-(2-pyridylazo)-2-naphthol molecularly imprinted film was formed on the QDs layer by photopolymerization. By using 365 nm ultraviolet light as excitation light, the QDs generated electron-hole, and the electron donor-ascorbic acid combined with electron to form the photocurrent signals. Based on this evidence, Ni2+ was detected according to "gate-effect". The complex was characterized by Fourier transform infrared spectrum and the CdTe QDs was characterized by ultraviolet absorption spectrum and fluorescence emission spectrum, the time for elution and rebinding and the concentration of ascorbic acid in base solution were optimized. The experiment showed that there was a liner relationship between the photocurrent and the concentration of Ni2+ at 5×10-11-5×10-8 mol/L, with the detection limit of 8.3×10-12 mol/L. The sensor also had good selectivity, and it was applied in real water samples analysis.
  • 加载中
    1. [1]

      1 Aksuner N, Henden E, Yilmaz I, Cukurovalic A. Sens. Actuators, B: Chem., 2012, 166: 269-274

    2. [2]

      2 Drews W, Weber G, Tölg G. Anal. Chim. Acta, 1990, 231: 265-271

    3. [3]

      3 Aragay G, Pons J, Merkoöi A. Chem Rev., 2011, 111(5): 3433-3458

    4. [4]

      4 Bahadir Z, Ozdes D, Bulut V N, Duran C, Elvan H, Bektes H, Soylak M. Toxicol. Environ. Chem., 2013, 95(5): 737-746

    5. [5]

      5 Scaccia S. Talanta, 1999, 49(2): 467-472

    6. [6]

      6 Batista B L, Rodrigues J L, Nunes J A, Tormen L, Cürtius A J, Jr F B. Talanta, 2008, 76(3): 575-579

    7. [7]

      7 Sahan Y, Basoglu F, Gücer S. Food Chem., 2007, 105(1): 395-399

    8. [8]

      8 Rahmi D, Takasaki Y, Zhu Y, Kobayashi H, Konagaya S, Haraguchi H, Umemura T. Talanta, 2010, 81(4): 1438-1445

    9. [9]

      9 Neodo S, Nie M, Wharton J A, Stokesa K R. Electrochim. Acta, 2013, 88: 718-724

    10. [10]

      10 Leesutthiphonchai W, Dungchai W, Siangproh W, Ngamrojnavanichd N, Chailapakuld O. Talanta, 2011, 85(2): 870-876

    11. [11]

      11 Segura R, Pradena M, Pinto D, Godoya F, Naglesb E, Arancibia V. Talanta, 2011, 85(5): 2316-2319

    12. [12]

      12 BO Hong-Yan, ZENG Wen-Jing, ZHANG Mi, DU Qing-Lan, GUO Qing-Yu, GAO Qiang. Chinese J. Anal. Chem., 2011, 39 (12): 1893-1897薄红艳, 黄绍峰, 曾文静, 张 宓, 杜青兰, 郭庆羽, 高 强. 分析化学, 2011, 39 (12): 1893-1897

    13. [13]

      13 Kiatkumjorn T, Rattanarata P, Siangprohb W, Chailapakula O, Praphairaksita N. Talanta, 2014, 128: 215-220

    14. [14]

      14 Li X, Li J P, Yin W L, Zhang L M. J. Solid State Electrochem., 2014, 18(7): 1815-1822

    15. [15]

      15 Li J P, Jiang F Y, Wei X P. Anal. Chem., 2010, 82(14): 6074-6078

    16. [16]

      16 Li J P, Ma F, Wei X P, Fu C, Pan H C. Anal. Chim. Acta, 2015, 871: 51-56

    17. [17]

      17 Luo X B, Liu L L, Deng F, Luo S L. J. Mater. Chem. A, 2013, 1: 8280-8286

    18. [18]

      18 Shirzadmehr A, Afkhami A, Madrakian T. J. Mol. Liq., 2015, 204: 227-235

    19. [19]

      19 Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. Mater. Sci. Eng., C, 2015, 48: 205-212

    20. [20]

      20 Wang G L, Xu J J, Chen H Y. Sci. China. Ser. B: Chem., 2009, 52(11): 1789-1800

    21. [21]

      21 Zhang X R, Guo Y S, Liu M S, Zhang S S. RSC Adv., 2013, 3(9): 2846-2857

    22. [22]

      22 Kang Q, Chen Y F, Li C C, Cai Q Y, Yao S Z, Grimes C A . Chem. Commun., 2011, 47(46): 12509-12511

    23. [23]

      23 Wang P, Ma X Y, Su M Q, Hao Q, Lei J P, Ju H X. Chem. Commun., 2012, 48(82): 10216-10218

    24. [24]

      24 Wang Y H, Zang D J, Ge S G, Ge L, Yu J H, Yan M. Electrochim. Acta, 2013, 107: 147-154

    25. [25]

      25 Han H Y, Sheng Z H, Liang J G. Anal. Chim. Acta, 2007, 596(1): 73-78

    26. [26]

      26 Li R, Jiang Z T, Mao L Y, Shen H X. Anal. Chim. Acta, 1998, 363(2): 295-299

    27. [27]

      27 Ferreira S L C, de Brito C F, Dantas A F, Araújo N M L, Costa A C S. Talanta, 1999, 48(5): 1173-1177

    28. [28]

      28 Betteridge D, Fernando Q, Freiser H. Anal. Chem., 1963, 35(3): 294-298

    29. [29]

      29 Li W L, Sheng P T, Cai J, Feng H Y, Cai Q Y. Biosens. Bioelectron., 2014, 61: 209-214

    30. [30]

      30 Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 15(14): 2854-2860

    31. [31]

      31 Wang W J, Hao Q, Wang W, Lei B, Lei J P, Wang Q B, Ju H X. Nanoscale, 2014, 6(5): 2710-2717

    32. [32]

      32 Yan T, Liu H Y, Gao P C, Sun M, Wei Q, Xu W G, Wang X D, Du B. New J. Chem., 2015, 39(5): 3964-3972

    33. [33]

      33 Pang X H, Pan J H, Gao P C, Wang Y Y, Wang L G, Du B, Wei Q. Biosens. Bioelectron., 2015, 74: 49-58

    34. [34]

      34 Lei Y X, Li H, Gao W X, Liu M C, Chen J X, Ding J C, Huang X B, Wu H Y. J. Mater. Chem. C, 2014, 2(35): 7402-7410

    35. [35]

      35 Chandio Z A, Talpur F N, Afridi H I, Khan H, Khaskheli G Q, Khaskheli M I. Anal. Methods, 2013, 5(17): 4425-4429

    36. [36]

      36 Danuta D A, Teresa L, Paweł K. J. Anal. Toxicol., 2015, 39(8): 1-5

    37. [37]

      37 Bahram M, Khezri S, Khezri S. Curr. Chem. Lett., 2013, 2(1): 49-56

    38. [38]

      38 Hurtadoa J, Naglesa E, ArancibiaaV, Rojasa R, Valderramaa M, Fröhlichb R. J. Coord. Chem., 2013, 66(4): 592-601

    39. [39]

      39 Li J P, Zhang L M, Wei G, Zhang Y, Zeng Y. Biosens. Bioelectron., 2015, 69: 316-320

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(0)
  • Abstract views(253)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return