Citation: YANG Hai-Yang, XU Chong-Sheng, YUE Lei, Mikhail Sudakov, PAN Yuan-Jiang, DING Chuan-Fan. Optimization of Performance of Toroidal Ion Trap with Triangular Electrode by Theoretical Simulation[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 482-488. doi: 10.11895/j.issn.0253-3820.150900 shu

Optimization of Performance of Toroidal Ion Trap with Triangular Electrode by Theoretical Simulation

  • Corresponding author: DING Chuan-Fan, 
  • Received Date: 11 November 2015
    Available Online: 4 January 2016

  • The toroidal ion trap is an ideal candidate for miniaturized ion trap because it has much higher ion trapping capacity than a standard quadrupole ion trap of equal trapping dimensions. A novel toroidal ion trap mass analyzer with triangular electrode which contained a filament end cap, a detector endcap, an inner ring and an outer ring was reported. After designing and optimizing the electrodes by theoretical simulations, we found that the asymmetric triangle electrodes could reduce the affection from toroidal shape and improve the ion ejection rate and the mass resolution of the ion trap. The best design of the toroidal ion trap with a mass resolution of 1486 at m/z 609 was obtained.
  • 加载中
    1. [1]

      1 Paul W, Steinwedel H. German Patent 944900, 1956; U.S. Patent 2939952, 1960

    2. [2]

      2 Chunsing O, Schuessler H A. Intern. J. Mass Spectrom. Ion Phys., 1980, 35: 305-309

    3. [3]

      3 McLuckey S A, Van Berkel G J, Glish G L. J. Am. Chem. Soc., 1990, 112: 5668-5677

    4. [4]

      4 Dawson P H,Whetten N R. J. Vacuum Sci. Technol., 1968, 5: 11-23

    5. [5]

      5 XU Fu-Xing, DANG Qian-Kun, CHEN Yin-Juan, YANG Kai, WANG Qiang, CHEN Bin, WANG Yuan-Yuan, DING Chuan-Fan. Chinese J. Anal. Chem., 2015, 43(6): 949-954 徐福兴, 党乾坤, 陈银娟, 杨 凯, 王 强, 陈 斌, 汪源源, 丁传凡. 分析化学, 2015, 43(6): 949-954

    6. [6]

      6 Bonner R F,Fulford J E, March R E, Hamilton G F. Intern. J. Mass Spectrom. Ion Phys., 1977, 24: 255-262

    7. [7]

      7 Schwartz J C, Senko M W, Syka J E P. U.S. Patent 5420425, 1995

    8. [8]

      8 Ouyang Z, Wu G X, Song Y S, Li H Y, Plass W R, Cooks R G. Anal. Chem., 2004, 76: 4595-4605

    9. [9]

      9 Gao L, Song Q, Patterson G E, Cooks R G, Ouyang Z. Anal. Chem., 2006, 78: 5994-6002

    10. [10]

      10 LI Ming, FEI Qiang, CHEN Huan-Wen, JIN Wei, JIANG Jie, JIN Qin-Han, ZHOU Jian-Guang, XU Xiao-Yu. Chinese Journal of Scientific Instrument, 2007, 28(6), 1147-1152李 明, 费 强, 陈焕文, 金 伟, 姜 杰, 金钦汉, 周建光, 许晓宇. 仪器仪表学报, 2007, 28(6), 1147-1152

    11. [11]

      11 JIANG Jie, FEI Qiang, JIN Wei, LI Ming, PANG Xiao-Dong, LI Bin, FAN Zhi-Yong, XU Xiao-Yu, ZHOU Jian-Guang, JIN Qin-Han. Chinese J. Anal. Chem., 2007, 35(9), 1387-1390姜 杰, 费 强, 金 伟, 李 明, 庞晓东, 李 彬, 范志勇, 许晓宇, 周建光, 金钦汉. 分析化学, 2007, 35(9), 1387-1390

    12. [12]

      12 Xiao Y, Ding Z Z, Xu C S, Dai X H, Fang X, Ding C F. Anal. Chem., 2014, 86: 5733-5739

    13. [13]

      13 Lammert S A, Plass W R, Thompson C V, Wise M B. International Journal of Mass Spectrometry, 2001, 212: 25-40

    14. [14]

      14 Lammert S A, Rockwood A A, Wang M, Lee M L, Lee E. D, Tolley S E, Oliphant J R, Jones J L, Waite R W. J. Am. Soc. Mass Spectrom., 2006, 17: 916-922

    15. [15]

      15 Taylor N, Austin D E. Inter. J. Mass Spectrom., 2012, 321: 25-32

    16. [16]

      16 Austin D E, Wang M, Tolley SS E, Maas J D, Hawkins A R, Rockwood A L, Tolley H D, Lee E D, Lee M L. Anal. Chem., 2007, 79: 2927-2932

    17. [17]

      17 CHEN Yi, TANG Fei, WANG Xiao-Hao. Chinese J. Anal. Chem., 2013, 41(10): 1577- 1581陈 一, 唐 飞, 王晓浩. 分析化学, 2013, 41(10): 1577- 1581

    18. [18]

      18 Sudakov M. The 7th International Conference on Charged Particle Optics, Cambridge, UK, July 24-28, 2006

    19. [19]

      19 Bui H A, Cooks R G. J. Mass Spectrom., 1998, 33(4): 297-304

    20. [20]

      20 LUO Chan, DING Chuan-Fan. Chinese J. Anal. Chem., 2012, 40(7): 989-995罗 婵, 丁传凡. 分析化学, 2012, 40(7): 989-995

    21. [21]

      21 Li X, Jiang G Y, Luo C, Xu F X, Wang Y Y, Ding L, Ding C F. Anal. Chem., 2009, 81(12): 4840-4846

    22. [22]

      22 SudakovM Y, Apatskaya M V, Vitukhin V V, Trubitsyn A A. J. Anal. Chem., 2012, 67(14): 1057-1065

    23. [23]

      23 ZHANG Zhong-Yao, LI Cui-Ping, HUANG Qi-Bin, LI Bao-Qiang, LI Zhi-Jun, ZHANG Lin. Journal of Chinese Mass Spectrometry Society., 2014, 35(3): 244-249张众垚, 李翠萍, 黄启斌, 李宝强, 李志军, 张 琳. 质谱学报, 2014, 35(3): 244-249

    24. [24]

      24 Zhang Z Y, Li C P, Ding C F, Xu F X, Li B Q, Huang Q B, Xia H X. Rapid Commun. Mass Spectrum., 2014, 28: 1764-1768

    25. [25]

      25 Wang M, Quist H E, Hansen B J, Peng Y, Zhang Z, Hawkins A R, Rockwood A L, Austin D E, Lee M L. J. Am. Soc. Mass Spectrom., 2011, 22(2): 369-378

  • 加载中
    1. [1]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    6. [6]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    10. [10]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    15. [15]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    16. [16]

      Gang Liu Heng Zhang Ying Ma Shiling Yuan Qisheng Song Zhenghu Xu Jichao Sun . Exploration and Practice on Improving the Teaching Quality of Organic Chemistry Laboratory Course. University Chemistry, 2024, 39(4): 70-74. doi: 10.3866/PKU.DXHX202309079

    17. [17]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    18. [18]

      Yang Liu Ying Yu Yilei Wang Chao Chen . Building of a High-Quality, Multi-Level Teaching Team in Chemistry Experimental Teaching Center. University Chemistry, 2024, 39(7): 166-171. doi: 10.12461/PKU.DXHX202405069

    19. [19]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return