Citation: ZHAN Nan, HUANG Yi, RAO Zhu, ZHAO Xue-Liang. Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrodes[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 355-360. doi: 10.11895/j.issn.0253-3820.150866 shu

Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrodes

  • Corresponding author: RAO Zhu, 
  • Received Date: 30 October 2015
    Available Online: 30 November 2015

    Fund Project: 本文系国土资源公益性行业科研专项经费项目(No.201411083-3) (No.201411083-3)中国地质调查项目(No.1212011120283) (No.1212011120283)中国地质调查项目(No.1212010816028)资助 (No.1212010816028)

  • The content of bicarbonate (HCO3-) and carbonate (CO32-) ions in groundwater and lake water reflects a broad set of carbon cycling reactions associated with decomposition or synthesis of organic compounds with mineral dissolution or precipitation, which indicates the local geochemical environment. However, the content of HCO3- and CO32- changes easily under the influence of pH, temperature, atmosphere pressure in the process of sampling, transportation and storage, so it has been a worldwide problem to determine the real content of HCO3- and CO32- ions in groundwater and lake water. This article proposed a new way to solve the problem by fast field detection of HCO3- and CO32- ions through the use of pH electrode combined with carbon dioxide electrode. Studies showed in the base solution of pH=4.8 ± 0.1, the detection range of HCO3- ion was 0.027-570 mg/L and that of CO32- was 1.25×10-8-39.7 mg/L. In the most case, the coexisting ions and weak acid (K+, Na+, Mg2+, Cl-, SO42-<100 mg/L; HSO3-, NO2-, HOAc<50 mg/L) did not interfere with the analysis. The method was validated for real water samples and the recoveries were in the range of 95.2%-99.2% with the relative standard deviations (RSDs) of 2.6%-3.7%. Compared with the acid-base titration method, the accuracy of this method had proved to be good. However, the method could be affected by temperature, so the standard solution and samples should be measured at the same temperature. Above all, this method is suitable for fast field analysis for HCO3- and CO32- ions in the nature water as it is sensitive, fast, economical, and the electrodes are easy to carry and operate. It has been successfully applied in the determination of HCO3- and CO32- in groundwater and lake water in Qinghai Province. Experiment showed that the pH of the groundwater samples from Haidong district was 6.4-7.4, with 234-4096 mg/L HCO3- and 0.16-1.89 mg/L CO32-. The pH of the lake water samples was about 8.7, with 1.36-1.86 g/L HCO3- and 32.3-43.9 mg/L CO32-, which was consistent with the previous results.
  • 加载中
    1. [1]

      1 Stefánsson A, Gunnarsson I, Giroud N. Anal. Chim. Acta., 2007, 582(1): 69-74

    2. [2]

      2 LIANG Xiong-Yu, HUANG Yi-Huo. Chinese J. Health Laboratory Technology, 2009, 7: 1518-1519梁雄宇, 黄义活. 中国卫生检验杂志, 2009, 7: 1518-1519

    3. [3]

      3 TENG Ming-De, XU Lei, GAO Geng-Shen, YIN Ya-Ru. Chinese J. Environmental Protection and Technology, 2013, 3: 31-33滕明德, 徐 磊, 高庚申, 尹亚茹. 环保科技, 2013, 3: 31-33

    4. [4]

      4 Zosel J, Oelβner W, Decker M, Gerlach G, Guth, U. Measurement Science and Technology, 2011, 22(7): 072001

    5. [5]

      5 Srinives S, Sarkar T, Hernandez R, Mulchandani A. Anal. Chim. Acta, 2015, 874: 54-58

    6. [6]

      6 Goswami K, Kennedy J, Dandge D, Klainer S, Tokar J. Chemical Biochemical and Environmental Sensors, 1990, 1172: 225-232

    7. [7]

      7 Tabacco M, Uttamlal M, McAllister M, Walt D R. Anal.Chem., 1999, 71(1): 154-161

    8. [8]

      8 Zhu Q Z, Aller R C, Fan Y Z. Mar. Chem., 2006,. 101(1-2): 40-53

    9. [9]

      9 Cai W J, Zhao P S, Wang Y C. Mar. Chem., 2000, 70(1-3): 133-148

    10. [10]

      10 XIAO Chang-Lai, LIANG Xiu-Juan, WANG Biao. Hydrogeology. Beijing: Tsinghua University Press, 2010: 41肖长来, 梁秀娟, 王彪. 水文地质学. 北京: 清华大学出版社, 2010: 41

    11. [11]

      11 Water Quality-Guidance on Sampling Techniques. Industry standard-Environmental Protection. HJ 494-2009水质·采样技术指导, 行业标准-环保. HJ 494-2009

    12. [12]

      12 Thermo Scientific. Carbon Dioxide Ion Selective Electrode User Guide, 2008

    13. [13]

      13 IUPAC, Recommendations for Nomenclature of Ion-selective Electrodes. Pure Appl. Chem., 1976, 48: 127-132

    14. [14]

      14 Buck R, Lindner E. Pure Appl. Chem., 1994, 66(12): 2527-2536

    15. [15]

      15 CAI Qing-Song, LIU Xia, JIANG Sheng-Xiang, JIN Yan-Bo. Analysis and Testing Technology and Instruments, 2002, 3: 165-169蔡青松, 刘 霞, 蒋生祥, 金彦博. 分析测试技术与仪器, 2002, 3: 165-169

    16. [16]

      16 Titrimetric Determination of Carbonate, Bicarbonate and Hydroxide in the Groundwater. Industry Standard-Geology. DZ/T 0064.49-1993地下水质检验方法.滴定法测定碳酸根、重碳酸根和氢氧根. 行业标准-地质. DZ/T 0064.49-1993

    17. [17]

      17 CUI Xiang-Hong. The Study of Groundwater searching Direction and Water Resources Utilization and Zonig in Low Hill Areas of East Qinghai. Chang'an Univ., 2007崔向红. 青海东部浅山区找水方向及水资源开发利用分区评价研究, 长安大学, 2007

    18. [18]

      18 LIU Xing-Qi, SHEN Ji, WANG Su-Min, ZHANG En-Lou, CAI Yuan-Feng. Geological Journal of China Universities, 2003, 1: 38-46刘兴起, 沈 吉, 王苏民, 张恩楼, 蔡元峰. 高校地质学报, 2003, 01: 38-46

    19. [19]

      19 HOU Shao-Hua, XU Hai, AN Zhi-Sheng. Earth and Environment, 2009, 1: 11-19侯昭华, 徐 海, 安芷生. 地球与环境, 2009, 1: 11-19

    20. [20]

      20 JIN Zhang-Dong. Quaternary Science, 2010, 30(6): 1162-1168金章东. 第四纪研究, 2010, 30(06): 1162-1168

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    13. [13]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    14. [14]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    15. [15]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Fei Nie Xueru Liu Zhuang Hui Yan Li Bin Cui . Curriculum Ideological and Political Design of Comprehensive Experiment of Soda Ash Preparation from Salt Lake Water. University Chemistry, 2024, 39(2): 121-126. doi: 10.3866/PKU.DXHX202308054

    17. [17]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    18. [18]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    19. [19]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    20. [20]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

Metrics
  • PDF Downloads(0)
  • Abstract views(599)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return