Citation: ZHAN Nan, HUANG Yi, RAO Zhu, ZHAO Xue-Liang. Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrodes[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 355-360. doi: 10.11895/j.issn.0253-3820.150866 shu

Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrodes

  • Corresponding author: RAO Zhu, 
  • Received Date: 30 October 2015
    Available Online: 30 November 2015

    Fund Project: 本文系国土资源公益性行业科研专项经费项目(No.201411083-3) (No.201411083-3)中国地质调查项目(No.1212011120283) (No.1212011120283)中国地质调查项目(No.1212010816028)资助 (No.1212010816028)

  • The content of bicarbonate (HCO3-) and carbonate (CO32-) ions in groundwater and lake water reflects a broad set of carbon cycling reactions associated with decomposition or synthesis of organic compounds with mineral dissolution or precipitation, which indicates the local geochemical environment. However, the content of HCO3- and CO32- changes easily under the influence of pH, temperature, atmosphere pressure in the process of sampling, transportation and storage, so it has been a worldwide problem to determine the real content of HCO3- and CO32- ions in groundwater and lake water. This article proposed a new way to solve the problem by fast field detection of HCO3- and CO32- ions through the use of pH electrode combined with carbon dioxide electrode. Studies showed in the base solution of pH=4.8 ± 0.1, the detection range of HCO3- ion was 0.027-570 mg/L and that of CO32- was 1.25×10-8-39.7 mg/L. In the most case, the coexisting ions and weak acid (K+, Na+, Mg2+, Cl-, SO42-<100 mg/L; HSO3-, NO2-, HOAc<50 mg/L) did not interfere with the analysis. The method was validated for real water samples and the recoveries were in the range of 95.2%-99.2% with the relative standard deviations (RSDs) of 2.6%-3.7%. Compared with the acid-base titration method, the accuracy of this method had proved to be good. However, the method could be affected by temperature, so the standard solution and samples should be measured at the same temperature. Above all, this method is suitable for fast field analysis for HCO3- and CO32- ions in the nature water as it is sensitive, fast, economical, and the electrodes are easy to carry and operate. It has been successfully applied in the determination of HCO3- and CO32- in groundwater and lake water in Qinghai Province. Experiment showed that the pH of the groundwater samples from Haidong district was 6.4-7.4, with 234-4096 mg/L HCO3- and 0.16-1.89 mg/L CO32-. The pH of the lake water samples was about 8.7, with 1.36-1.86 g/L HCO3- and 32.3-43.9 mg/L CO32-, which was consistent with the previous results.
  • 加载中
    1. [1]

      1 Stefánsson A, Gunnarsson I, Giroud N. Anal. Chim. Acta., 2007, 582(1): 69-74

    2. [2]

      2 LIANG Xiong-Yu, HUANG Yi-Huo. Chinese J. Health Laboratory Technology, 2009, 7: 1518-1519梁雄宇, 黄义活. 中国卫生检验杂志, 2009, 7: 1518-1519

    3. [3]

      3 TENG Ming-De, XU Lei, GAO Geng-Shen, YIN Ya-Ru. Chinese J. Environmental Protection and Technology, 2013, 3: 31-33滕明德, 徐 磊, 高庚申, 尹亚茹. 环保科技, 2013, 3: 31-33

    4. [4]

      4 Zosel J, Oelβner W, Decker M, Gerlach G, Guth, U. Measurement Science and Technology, 2011, 22(7): 072001

    5. [5]

      5 Srinives S, Sarkar T, Hernandez R, Mulchandani A. Anal. Chim. Acta, 2015, 874: 54-58

    6. [6]

      6 Goswami K, Kennedy J, Dandge D, Klainer S, Tokar J. Chemical Biochemical and Environmental Sensors, 1990, 1172: 225-232

    7. [7]

      7 Tabacco M, Uttamlal M, McAllister M, Walt D R. Anal.Chem., 1999, 71(1): 154-161

    8. [8]

      8 Zhu Q Z, Aller R C, Fan Y Z. Mar. Chem., 2006,. 101(1-2): 40-53

    9. [9]

      9 Cai W J, Zhao P S, Wang Y C. Mar. Chem., 2000, 70(1-3): 133-148

    10. [10]

      10 XIAO Chang-Lai, LIANG Xiu-Juan, WANG Biao. Hydrogeology. Beijing: Tsinghua University Press, 2010: 41肖长来, 梁秀娟, 王彪. 水文地质学. 北京: 清华大学出版社, 2010: 41

    11. [11]

      11 Water Quality-Guidance on Sampling Techniques. Industry standard-Environmental Protection. HJ 494-2009水质·采样技术指导, 行业标准-环保. HJ 494-2009

    12. [12]

      12 Thermo Scientific. Carbon Dioxide Ion Selective Electrode User Guide, 2008

    13. [13]

      13 IUPAC, Recommendations for Nomenclature of Ion-selective Electrodes. Pure Appl. Chem., 1976, 48: 127-132

    14. [14]

      14 Buck R, Lindner E. Pure Appl. Chem., 1994, 66(12): 2527-2536

    15. [15]

      15 CAI Qing-Song, LIU Xia, JIANG Sheng-Xiang, JIN Yan-Bo. Analysis and Testing Technology and Instruments, 2002, 3: 165-169蔡青松, 刘 霞, 蒋生祥, 金彦博. 分析测试技术与仪器, 2002, 3: 165-169

    16. [16]

      16 Titrimetric Determination of Carbonate, Bicarbonate and Hydroxide in the Groundwater. Industry Standard-Geology. DZ/T 0064.49-1993地下水质检验方法.滴定法测定碳酸根、重碳酸根和氢氧根. 行业标准-地质. DZ/T 0064.49-1993

    17. [17]

      17 CUI Xiang-Hong. The Study of Groundwater searching Direction and Water Resources Utilization and Zonig in Low Hill Areas of East Qinghai. Chang'an Univ., 2007崔向红. 青海东部浅山区找水方向及水资源开发利用分区评价研究, 长安大学, 2007

    18. [18]

      18 LIU Xing-Qi, SHEN Ji, WANG Su-Min, ZHANG En-Lou, CAI Yuan-Feng. Geological Journal of China Universities, 2003, 1: 38-46刘兴起, 沈 吉, 王苏民, 张恩楼, 蔡元峰. 高校地质学报, 2003, 01: 38-46

    19. [19]

      19 HOU Shao-Hua, XU Hai, AN Zhi-Sheng. Earth and Environment, 2009, 1: 11-19侯昭华, 徐 海, 安芷生. 地球与环境, 2009, 1: 11-19

    20. [20]

      20 JIN Zhang-Dong. Quaternary Science, 2010, 30(6): 1162-1168金章东. 第四纪研究, 2010, 30(06): 1162-1168

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    6. [6]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    7. [7]

      Fei Nie Xueru Liu Zhuang Hui Yan Li Bin Cui . Curriculum Ideological and Political Design of Comprehensive Experiment of Soda Ash Preparation from Salt Lake Water. University Chemistry, 2024, 39(2): 121-126. doi: 10.3866/PKU.DXHX202308054

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(0)
  • Abstract views(364)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return