Citation: LI Zheng-Feng, XU Guang-Jin, WANG Jia-Jun, DU Guo-Rong, CAI Wen-Sheng, SHAO Xue-Guang. Outlier Detection for Multivariate Calibration in Near Infrared Spectroscopic Analysis by Model Diagnostics[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(2): 305-309. doi: 10.11895/j.issn.0253-3820.150793 shu

Outlier Detection for Multivariate Calibration in Near Infrared Spectroscopic Analysis by Model Diagnostics

  • Corresponding author: SHAO Xue-Guang, 
  • Received Date: 11 October 2015
    Available Online: 28 October 2015

    Fund Project: 本文系国家自然科学基金项目(No.21475068) (No.21475068)中国烟草总公司重大专项课题(No.Ts-03-20110020)资助 (No.Ts-03-20110020)

  • Outlier detection is an important task in multivariate calibration because the quality of a calibration model is determined by that of the calibration data. An outlier detection method is proposed for near infrared (NIR) spectral analysis. The method is based on the definition of outlier and the principle of partial least squares (PLS) regression, i.e., an outlier in a dataset behaves differently from the rest, and the prediction result of a PLS model is an accumulation of several independent latent variables. Therefore, the proposed method builds a PLS model with a calibration dataset, and then the contribution of each latent variable is investigated. Outliers can be detected by comparing these contributions. An NIR spectral dataset of orange juice samples is adopted for testing the method. Six outliers are detected in the calibration set. The root mean squared error of cross validation (RMSECV) becomes to 4.809 from 16.870 and the root mean squared error of prediction (RMSEP) becomes to 3.332 from 3.688 after the removal of the outliers. Compared with a robust regression method, the result of the proposed method seems more reasonable.
  • 加载中
    1. [1]

      1 Wold S, Ruhe A, Wold H, Dunn W J. SIAM J. Sci. Stat. Comput., 1984, 5(3): 735-743

    2. [2]

      2 LIANG Miao,CAI Jia-Yue, YANG Kai, SHU Ru-Xin, ZHAO Long-Lian, ZHANG Lu-Da, LI Jun-Hui. Chinese J. Anal. Chem., 2014, 42(11): 1687-1691 梁 淼, 蔡嘉月, 杨 凯, 束茹欣, 赵龙莲, 张录达, 李军会. 分析化学, 2014, 42(11): 1687-1691

    3. [3]

      3 ZHANG Lu-Da, SU Shi-Guang, WANG Lai-Sheng, LI Jun-Hui, YANG Li-Ming. Spectroscopy and Spectral Analysis, 2005, 25(1): 33-35 张录达, 苏时光, 王来生, 李军会, 杨丽明. 光谱学与光谱分析, 2005, 25(1): 33-35

    4. [4]

      4 Li Y K, Shao X G, Cai W S. Talanta, 2007, 72(1): 217-222

    5. [5]

      5 LIN Hao, ZHAO Jie-Wen, CHEN Quan-Sheng, CAI Jian-Rong, ZHOU Ping. Spectroscopy and Spectral Analysis, 2010, 30(4): 929-932 林 颢, 赵杰文, 陈全胜, 蔡健荣, 周 平. 光谱学与光谱分析, 2010, 30(4): 929-932

    6. [6]

      6 Shao X G, Bian X H, Liu J J, Zhang M, Cai W S. Anal. Methods, 2010, 2(11): 1662-1666

    7. [7]

      7 Wold S, Antti H, Lindgren F, Ohman J. Chemom. Intell. Lab. Syst., 1998, 44(1-2): 175-185

    8. [8]

      8 Shao X G, Leung A K M, Chau F T. Acc. Chem. Res., 2003, 36(4): 276-283

    9. [9]

      9 Norgaard L, Saudland A, Wagner J, Wagner J, Nielsen J P, Munk L, Engelsen S B. Appl. Spectrosc., 2000, 54(3): 413-419

    10. [10]

      10 Centner V, Massart D L, de Noord O E, de Jong S, Vandeginste M B, Sterna C. Anal. Chem., 1996, 68(21): 3851-3858

    11. [11]

      11 Cai W S, Li Y K, Shao X G. Chemom. Intell. Lab. Syst., 2008, 90(2): 188-194

    12. [12]

      12 Li H D, Liang Y Z, Xu Q S, Cao D S. Anal. Chim. Acta, 2009, 648(1): 77-84

    13. [13]

      13 Araujo M C U, Saldanha T C B, Galvao R K H, Yoneyama T, Chame H C, Visani V. Chemom. Intell. Lab. Syst., 2001, 57(2): 65-73

    14. [14]

      14 Xu H, Liu Z C, Cai W S, Shao X G. Chemom. Intell. Lab. Syst., 2009, 97(1): 189-193

    15. [15]

      15 Liang Y Z, Kvalheim O M. Chemom. Intell. Lab. Syst., 1996, 32(1): 1-10

    16. [16]

      16 Pierna J A F, Jin L, Daszykowski M, Wahl F, Massart D L. Chemom. Intell. Lab. Syst., 2003, 68(1-2): 17-28

    17. [17]

      17 Bian X H, Cai W S, Shao X G, Chen D, Grant E R. Analyst, 2010, 135(11): 2841-2847

    18. [18]

      18 Pierna J A F, Wahl F, de Noord O E, Massart D L. Chemom. Intell. Lab. Syst., 2002, 63(1): 27-39

    19. [19]

      19 Walczak B, Massart D L. Chemom. Intell. Lab. Syst., 1998, 41(1): 1-15

    20. [20]

      20 Hubert M, Vanden Branden K. J. Chemom., 2003, 17(10): 537-549

    21. [21]

      21 Liu Z C, Cai W S, Shao X G. Sci. China Ser B-Chem., 2008, 51(8): 751-759

    22. [22]

      22 Liu Z C, Ma X, Wen Y D, Wang Y, Cai W S, Shao X G. Sci. China Ser B-Chem., 2009, 52(7): 1021-1027

    23. [23]

      23 Breunig M M, Kriegel H P, Ng R T, Sander J. Sigmod. Rec., 2000, 29(2): 93-104

    24. [24]

      24 Li W, Goovaerts P, Meurens M. J. Arg. Food Chem., 1996, 44(8): 2252-2259

  • 加载中
    1. [1]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    7. [7]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    8. [8]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    9. [9]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    10. [10]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    11. [11]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    12. [12]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    13. [13]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    18. [18]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    19. [19]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    20. [20]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return