Citation: NING Lu-Sheng, XU Ming, GUO Cheng-An, ZHAO Peng, WEN Lu-Hong, ZHANG Xin-Rong. Study of Single Electrode Dielectric Barrier Discharge Ion Source[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(2): 252-257. doi: 10.11895/j.issn.0253-3820.150784 shu

Study of Single Electrode Dielectric Barrier Discharge Ion Source

  • Corresponding author: ZHAO Peng, 
  • Received Date: 9 October 2015
    Available Online: 13 November 2015

    Fund Project: 本文系宁波大学学校人才工程项目(No.ZX2014000824) (No.ZX2014000824)宁波市自然科学基金(No.2014A610158) (No.2014A610158)

  • Dielectric barrier discharge ion source is an ambient ion source. Coupled with its advantages of solvent-free method, extensive application scope and easy miniaturization, it has attracted widespread attention. The conventional dielectric barrier discharge ion source uses surface double electrode or needle-ring electrode designs. The grounded electrode of the former can weaken ionization head energy formed in strong electric field of helium ionization, and shorten the distance of plasma beam. The electric field of the latter mainly concentrates on the peak of the needle electrode, which can weaken the energy of ionization head and make the length of the plasma beam shorter than the surface double electrode. In this work, the influencing factors of discharge were analyzed, and the electric field was adjusted by changing the shape of the electrode and increasing insulation medium components, thus forcing the strong electric field to focus on one side of the electrode, which could avoid the reflux discharge phenomenon and achieve stable and efficient plasma beam. The maximum length of plasma beam could reach more than 8 cm. On the basis, a single electrode dielectric barrier discharge ion source (DBDI), mainly composed of inert carrier gas, high voltage electrode, insulation tube, gas control and temperature control parts, was developed. Using the new type of ion source, the liquid sample of caffeine and the solid tablets of acetaminophen were analyzed by DBDI-MS. The correlation coefficient of the caffeine quantitative curve was 99.66%, and the signal to noise ratio of 100 μg/L was 23. The main component of the acetaminophen was C8H9NO2 that could be rapidly detected in the mass spectrum, and the response intensity was 1.26×106. The results showed that the new type of ion source could realize the quantitative and rapid in situ analysis of the sample.
  • 加载中
    1. [1]

      1 DENG Yu-Jia, LI Cheng-Hui, JIANG Xiao-Ming, HOU Xian-Deng. Chinese J. Anal. Chem., 2015, 43(9): 1278-1284

    2. [2]

      邓宇佳, 李成辉, 蒋小明, 侯贤灯. 分析化学, 2015, 43(9): 1278-1284

    3. [3]

      2 DONG Li-Fang, RAN Jun-Xia, YIN Zeng-Qian, MAO Zhi-Guo. Spectroscopy and Spectral Analysis, 2005, 25(8): 1184-1186 董丽芳, 冉俊霞, 尹增谦, 毛志国. 光谱学与光谱分析, 2005, 25(8): 1184-1186

    4. [4]

      3 Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306(5695): 471-473

    5. [5]

      4 XUE Zhen, QIU Bo, LIN Guang-Xin, LAI Cong-Fang, LUO Hai. Progress In Chemistry, 2008, (4): 594-601 薛 震, 邱 波, 林广欣, 赖丛芳, 罗 海. 化学进展, 2008, (4): 594-601

    6. [6]

      5 Cody R B, Laramee J A, Durst H D. Anal.Chem., 2005, 77(8): 2297-2302

    7. [7]

      6 Chernetsova E S, Morlock G E, Revelsky I A. Russian Chemical Reviews, 2011, 80(3): 235-255

    8. [8]

      7 Na N, Zhao M, Zhang S, Yang C, Zhang X. J. Am. Soc. Mass Spectrom., 2007, 18(10): 1859-1862

    9. [9]

      8 Na N, Zhang C, Zhao M, Zhang S, Yang C, Fang X, Zhang X. J. Mass Spectrom.: JMS, 2007, 42(8): 1079-1085

    10. [10]

      9 Sugiyama M, Kumano S, Nishimura K, Hasegawa H, Hashimoto Y. Rapid Commun. Mass Spectrom., 2013, 27(9): 1005-1010

    11. [11]

      10 Meyer C. Muller S. Gilbert-Lopez B. Franzke J. Anal. Bioanal. Chem., 2013, 405(14): 4729-4735

    12. [12]

      11 Harper J D, Charipar N A, Mulligan C C, Zhang X R, Cooks R G, Ouyang Z. Anal.Chem., 2008, 80(23): 9097-9104

    13. [13]

      12 ZHANG Si-Chun, ZHANG Xi-Rong. Science China: Chemical, 2014(5): 680-686 张四纯, 张新荣. 中国科学: 化学, 2014(5): 680-686

    14. [14]

      13 Hiraoka K, Chen L C, Iwama T, Mandal M K, Ninomiya S, Suzuki H. Ariyada O, Furuya H, Takekawa K. J. Mass Spectrom. Soc. Jpn., 2010, 58(6): 215-220

    15. [15]

      14 Martinez-Jarquin S, Winkler R. Rapid Commun. Mass Spectrom., 2013, 27(5): 629-634

    16. [16]

      15 Kumano S, Sugiyama M, Yamada M, Nishimura K, Hasegawa H, Morokuma H, Inoue H, Hashimoto Y. Anal.Chem., 2013, 85(10): 5033-5039

    17. [17]

      16 ZHANG Guan-Jun, ZHAN Jiang-Yang, SHAO Xian-Jun, PENG Zhao-Yu. High Voltage Engineering, 2011, 37(6): 1432-1438 张冠军, 詹江杨, 邵先军, 彭兆裕. 高电压技术, 2011, 37(6): 1432-1438

    18. [18]

      17 LIU Chong, WU Cheng-Bai, ZHANG Wen-Tao, LIANG Jun-Sheng, WANG Li-Ding. Optics and Precision Engineering, 2008, 16(3): 459-466 刘 冲, 吴成百, 张文涛, 梁军生, 王立鼎. 光学精密工程, 2008, 16(3): 459-466

    19. [19]

      18 Kogelschatz U. Plasma Chem. Plasma Process., 2003, 23(1): 1-46

    20. [20]

      19 Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K. Appl. Phys. Lett., 2009, 95(14): 141502

    21. [21]

      20 Walsh J L, Kong M G. Appl. Phys. Lett., 2008, 93(11): 111501

  • 加载中
    1. [1]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    5. [5]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    6. [6]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(0)
  • Abstract views(621)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return