Citation: WANG Jia-Jia, LIAN Man, XIONG Jie, LI Zai-Jun. Synthesis of Novel Water-Soluble Silicon Quantum Dots with Imidazole Groups and Its Application in Fluorescent Detection of Trace Copper in Fruits and Vegetables[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 367-376. doi: 10.11895/j.issn.0253-3820.150778 shu

Synthesis of Novel Water-Soluble Silicon Quantum Dots with Imidazole Groups and Its Application in Fluorescent Detection of Trace Copper in Fruits and Vegetables

  • Corresponding author: LI Zai-Jun, 
  • Received Date: 7 October 2015
    Available Online: 8 November 2015

    Fund Project: 本文系国家自然科学基金资助项目(No.21176101) (No.21176101)

  • Silicon quantum dot has become an attractive nanomaterial due to their excellent biocompatibility and optical performance. However, poor water-solubility of the traditional silicon quantum dot limits its wide application. In this study, we reported the synthesis of water-soluble silicon quantum dots with imidazole groups by using hydrothermal method, in which N-trimethysilylimidazole was used as a precursor of silicon. Compared with sodium borohydride, ascorbic acid, bovine serum protein, cysteine and citric acid, the as-prepared silicon quantum dots offered the strongest fluorescence intensity when sodium citrate was used as the reducing agent and stabilizer for the synthesis. The reaction could complete within 2 h at 220℃. The obtained silicon quantum dots showed good water-solubility with an average particle size of 2.6 nm, and the result of infrared spectroscopic analysis verified the existence of free imidazole groups on the surface. By means of the investigation of the fluorescence quenching behavior of copper ions towards the silicon quantum dots at different temperatures, we found that the degree of fluorescence quenching increased with the increase of temperature. There results proved that the fluorescence decrease belongs to static quenching. Namely, the interaction of Cu2+ with imidazole groups on the surface of silicon quantum dots formed stable complex. In addition, the resonance light scattering analysis also showed that the fluorescence quenching process was accompanied by the agglomeration of particles. Based on the fluorescence quenching behavior of silicon quantum dots, we established a method for the fluorescent detection of Cu2+. When the concentration of Cu2+ was in the range of 0.04-2400 μmol/L, the fluorescence intensity would linearly decrease with the increase of Cu2+ concentration, and the detection limit (S/N=3) reached 1.29×10-8 mol/L. The method provided high sensitivity, selectivity and reproducibility, and was successfully applied to the determination of trace copper in fruits and vegetables.
  • 加载中
    1. [1]

      1 Li J, Hong X, Li D, Zhao K, Wang L, Wang H, Du Z, Li J, Bai Y, Li T. Chem. Commun., 2004, 4(15): 1740-1741

    2. [2]

      2 Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T. Chem. Mater., 2004, 16(21): 4022-4027

    3. [3]

      3 WANG Zong-Hua, GAO Yan-Li, ZHANG Fei-Fei, XIA Yan-Zhi, LI Yan-Hui. Journal of Analytical Science, 2012, 28(1): 119-125王宗花, 高艳丽, 张菲菲, 夏延致, 李延辉. 分析科学学报, 2012, 28(1): 119-125

    4. [4]

      4 Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404(6773): 59-61

    5. [5]

      5 LIN Zhang-Bi, SU Xing-Guang, ZHANG Hao, MOU Ying, SUN Ye, HU Hai, YANG Bai, YAN GANG-Lin, LUO Gui-min, JIN Qin-Han. Chem. J. Chinese Universities, 2003, 24(2): 216-220林章碧, 苏星光, 张 皓, 牟 颖, 孙 晔, 胡 海, 杨 柏, 闫岗林, 罗贵民, 金钦汉. 高等学校化学学报, 2003, 24(2): 216-220

    6. [6]

      6 Yu W W, Qu L H, Guo W Z, Peng X G. Chem. Mater., 2003, 16(3): 2854-2860

    7. [7]

      7 Liu W Y, Lee J S, Talapin D V. J. Am. Chem. Soc., 2013, 135(4): 1349-1357

    8. [8]

      8 Liu Z P, Kumbhar A, Xu D, Zhang J, Sun Z Y, Fang J Y. Angew. Chem. Int. Ed., 2008, 47(19): 3540-3542

    9. [9]

      9 Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. J. Am. Chem. Soc., 2002, 124(20): 5782-5790

    10. [10]

      10 Ellingson R J, Beard M C, Johnson J C, Yu P R, Micic O I, Nozik A J, Shabaev A, Efros A L. Nano Lett., 2005, 5(5): 865-871

    11. [11]

      11 Qin Jun-Jie, Cao Li-Xin, Liu Wei, Gao Rong-Jie, Su Ge, Qu Hua, Xia Cheng-Hui. Chin. J. Lumin., 2014, 35(7): 858-865秦俊杰, 曹立新, 柳 伟, 高荣杰, 苏 革, 曲 华, 夏呈辉. 发光学报, 2014, 35(7): 858-865

    12. [12]

      12 Sun Lin, Zhang Qiu-Yan, Li Zhen-Zhen, Pan Yu-Jin, Wang Qing, Zhao Qiang. Chin. J. Lumin., 2015, 36(3): 339-347孙 琳, 张秋艳, 李珍珍, 潘玉瑾, 王 青, 赵 强. 发光学报, 2015, 36(3): 339-347

    13. [13]

      13 Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4(1): 11-18

    14. [14]

      14 Feng Y L, Liu Y F, Su C, Ji X H, He Z K. Sens. Actuators B, 2014, 203: 795-801

    15. [15]

      15 Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Lumin., 1998, 80(1): 159-162

    16. [16]

      16 Warner J H, Hoshino A, Yamamoto K, Tilley R D. Angewandte Chemie, 2005, 117(29): 4626-4630

    17. [17]

      17 Warner J H, Rubinsztein-Dunlop H, Tilley R D. J. Phys. Chem. B, 2005, 109(41): 19064-19067

    18. [18]

      18 Heath J R. Science, 1992, 258(5085): 1131-1133

    19. [19]

      19 Bley R A, Kauzlarich S M. J. Am. Chem. Soc., 1996, 118(49): 12461-12462

    20. [20]

      20 Yang C S, Bley R A, Kauzlarich S M, Lee H W H, Delgado G R. J. Am. Chem. Soc., 1999, 121(22): 5191-5195

    21. [21]

      21 Somogyi B, Zolyomi V, Gali A. Nanoscale, 2012, 4(24): 7720-7726

    22. [22]

      22 Choi J, Wang N S, Reipa V. Bioconjugate Chem., 2008, 19(3): 680-685

    23. [23]

      23 Sudeep P K, Page Z, Emrick T. Chem. Commun., 2008, 46: 6126-6127

    24. [24]

      24 Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim T H, Yamamoto K, Northcote P T, Tilley R D. J. Am. Chem. Soc., 2010, 132(1): 248-253

    25. [25]

      25 Alsharif N H, Berger C E M, Varanasi S S, Chao Y, Horrocks B R, Datta H K. Small, 2009, 5(2): 221-228

    26. [26]

      26 Choi J K, Jang S, Sohn H, Jecong H D. J. Am. Chem. Soc., 2009, 131(49): 17894-17900

    27. [27]

      27 Erogbogbo F, Yong K T, Roy I, Xu G X, Prasad P N. ACS Nano, 2008, 2(5): 873-878

    28. [28]

      28 Zhang J, Yu S H. Nanoscale, 2014, 6(8): 4096-4096

    29. [29]

      29 Feng Y L, Liu Y F, Su C, Ji X H, He Z K. Sens. Actuators B, 2014, 203: 795-801

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    3. [3]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    19. [19]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(0)
  • Abstract views(256)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return