Citation: HONG Xiao-Yu, WANG Hao, XU Jin-Ling, LI Shui-Ming, WANG Yong. Application of High Resolution Time-of-Flight Mass Spectroscopy in Relative Quantitative Analysis in Proteomics[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 403-408. doi: 10.11895/j.issn.0253-3820.150751 shu

Application of High Resolution Time-of-Flight Mass Spectroscopy in Relative Quantitative Analysis in Proteomics

  • Corresponding author: WANG Yong, 
  • Received Date: 22 September 2015
    Available Online: 12 December 2015

    Fund Project: 本文系深圳市科技项目(Nos.JSGG20140703163838793,20150006)资助 (Nos.JSGG20140703163838793,20150006)

  • By using the high resolution mass spectrometer TripleTOF 5600, three kinds of standard proteins including bovine serum albumin (BSA), ovalbumin (OVA) and lysozyme C(LYZC) were analyzed, and the correlationship between the ion intensity of mass spectrometry and the relative content of protein sample was investigated. The protein samples were digested by trypsion and diluted to 1-1024 fmol in 7 μL. The ion counts per second (cps) were used to stand for the amounts of proteins and peptides. Then the correlation between sum of ion intensity (cps) of all the peptides, number of peptides detected and the amount of proteins was investigated. By comparing the change of values of the same sample in three parallel experiments, a linear relationship between these indexes and the amount of proteins within 1-1024 fmol was found when the cps was more than 1000. Usually, the maximal ion intensity was no more than 1.5 times of the minimum value for same peptide in triplicate experiments, which suggested that the 3 times or more change of ion intensity was the minimum threshold to determine the differences of proteins amounts in different samples. This study provides a relative quantitative analysis method using qualitative data of high resolution and high scan speed mass spectrometry, which can quickly and easily provide reference for biological and medical research.
  • 加载中
    1. [1]

      1 Yates J R, Washburn M P. Anal. Chem., 2013, 85(19): 8881

    2. [2]

      2 Griffiths J. Anal. Chem., 2007, 79(17): 6451-6454

    3. [3]

      3 LV J N, Ma S P, Zhang X F, Zheng L J, Ma Y H, Zhao X Y, Lai W J, Shen H Y, Wang Q S, Ji J G. J. Proteom., 2014, 110(3): 45-58

    4. [4]

      4 Altelaar A F, Munoz J, Heck A J. Nat. Rev. Genet., 2013, 14(1): 35-48

    5. [5]

      5 Teramoto R, Minagawa H, Honda M, Miyazaki K, Tabuse Y, Kamijo K, Ueda T, Kaneko S. Biochim. Biophys. Acta., 2008, 1784(5): 764-772

    6. [6]

      6 Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T. J. Neurochem., 2011, 117(2): 333-345

    7. [7]

      7 Nie A Y, Zhang L, Yan G Q, Yao J, Zhang Y, Lu H J, Yang P Y, He F C. Anal. Chem., 2011, 83(15): 6026-6033

    8. [8]

      8 Tian R J, Wang S, Elisma F, Li L, Zhou H, Wang L S, Figeys D. Mol. Cell Proteom., 2011, 10(2): M110.000679

    9. [9]

      9 Sudhir P R, Chen C H, Pavana Kumari M, Wang M J, Tsou C C, Sung T Y, Chen J Y, Chen C H. Mol. Cell Proteom., 2012, 11(10): 901-915

    10. [10]

      10 Chahrour O, Cobice D, Malone J. J. Pharm. Biomed. Anal., 2015, 113: 2-20

    11. [11]

      11 Matros A, Kaspar S, Witzel K, Mock H P. Phytochemistry., 2011, 72(10): 963-974

    12. [12]

      12 ZHU Jin-Lei, ZHANG Kai, HE XI-Wen, ZHANG Yu-Kui. Chinese J. Anal.Chem., 2010, 38(3): 434-441朱金蕾, 张 锴, 何锡文, 张玉奎. 分析化学, 2010, 38(3): 434-441

    13. [13]

      13 Lanucara F, Eyers C E. Methods in Enzymology,San Diego: Elsevier Academic Press Inc 2011, 500: 133-150

    14. [14]

      14 Dephoure N, Gygi S P. Sci. Signal., 2012, 5(217): rs2

    15. [15]

      15 WU Peng, He Fu-Chu, JIANG Ying. Prog. Biochem. Biophys., 2013, 40(3): 281-292武 鹏, 贺福初, 姜 颖. 生物化学与生物物理进展, 2013, 40(3): 281-292

    16. [16]

      16 ZHANG Wei. Chinese J. Anal.Chem., 2014, 42(12): 1859-1868张 伟. 分析化学, 2014, 42(12): 1859-1868

    17. [17]

      17 Clarke D J, Campopiano D J. Analyst, 2015, 140(8): 2679-2686

    18. [18]

      18 Schubert O T, Gillet L C, Collins B C, Navarro P, Rosenberger G, Wolski W, Lam H, Amodei D, Mallick P, MacLean B, Aebersold R. Nat. Protoc., 2015, 10(3): 426-441

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    4. [4]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    9. [9]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    10. [10]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    15. [15]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    18. [18]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

Metrics
  • PDF Downloads(0)
  • Abstract views(233)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return