Citation: CHEN Zhan-Ying, LIU Shu-Jiang, WANG Jian-Long, CHANG Yin-Zhong. Determination of Atmospheric Krypton and Xenon by Gas Chromatography-Mass Spectrometry in Direct Injection Mode[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 468-473. doi: 10.11895/j.issn.0253-3820.150750 shu

Determination of Atmospheric Krypton and Xenon by Gas Chromatography-Mass Spectrometry in Direct Injection Mode

  • Corresponding author: WANG Jian-Long, 
  • Received Date: 22 September 2015
    Available Online: 4 January 2016

    Fund Project: 本文系教育部博士点基金(No.20130002130012) (No.20130002130012)长江学者和创新团队发展计划资助(IRT-13026)项目 (IRT-13026)

  • Volume concentration determination for atmospheric krypton and xenon is very important for krypton-85 and radioactive xenon isotopes monitoring. An injection setup integrated adjustable quantity sample injection and quantitative dilution function was designed. The effects of EI source parameters on the sensitivity of MS detector were studied. The optimized values were as following: ionization energy of 70 eV, emission current of 40 mA, cathode voltage of 27 mV, focus voltage of 85 mV and lens compensation of 20 V, respectively. A GC-MS method for the determination of krypton and xenon in atmosphere without of sample pretreatment was developed. The minimal detected concentrations for krypton and xenon were 3.3×10-8(V/V) and 2.6×10-9(V/V). Moreover, the krypton and xenon concentrations in the ground level air around our laboratory were measured with the results of 1.1×10-6 (V/V) and 9.3×10-8 (V/V). The related combined standard uncertainties for krypton and xenon results were 2.38% and 3.15%, respectively.
  • 加载中
    1. [1]

      1 Bowyer T W, Schlosser C, Abel K H. J. Environ. Radioactivity, 2002, 59: 139-151

    2. [2]

      2 ZHANG Li-Xing. Nuclear Technology, 2004, 27(10): 770-777张利兴. 核技术, 2004, 27(10): 770-777

    3. [3]

      3 Wang S L, LI Q, Meng Q H, Chen Z Y, Zhao Y G, Li H J, Jia H M, Chang Y Z, Liu S J, Zhang X J, Fan Y Q, Wan L, Lou Y. Appl. Radiat. Isotopes, 2013, 81: 344-347

    4. [4]

      4 Zhou C, Zhou G, Feng S. Appl. Radiat. Isotopes, 2013, 72: 123-127

    5. [5]

      5 Charles W. Nakhleh. Doctor Dissertation to Cornell University, USA, 1996

    6. [6]

      6 Von Hippel F, Albright D H, Levi B G. Sci. Am., 1985, 40: 253

    7. [7]

      7 Mian Z, Nayyar A H. Science and Global Security, 2002, 10: 151-179

    8. [8]

      8 Kunz C O, Paperiello C J. Science, 1976, 192 : 1235

    9. [9]

      9 Richard W, Kunz C O. Atmos. Environ., 1989, 23: 1827

    10. [10]

      10 Bowyer T W, Abel K H, Hensley W K. J. Environ. Radioactivity, 1997, 37(2): 143-153

    11. [11]

      11 Rudin S, Hart H J. Nucl. Med, 1971, 12: 145-146

    12. [12]

      12 Bolmsjo M S, Persson B R R. Phys. Med. Biol., 1982, 27(6): 861-866

    13. [13]

      13 Jacob D J, Prather M J, Wofsy S C. J.Geoph. Res., 1987 (D6), 92: 6614-6626

    14. [14]

      14 Igarashi Y, Sartorius H, Miyao T. J. Environ. Radioactivity, 2000, 48: 191-202

    15. [15]

      15 Zimmermann P H, Feichter J, Rath H K. Atmos. Environ., 1989, 23: 25-35

    16. [16]

      16 Ozima M, Podosek F A. Noble Gas Geochemistry, London: Cambridge University Press, 1983: 12

    17. [17]

      17 ZHANG Hai-Tao, CHEN Zhan-Ying, ZHANG Li-Xing, ZENG Bin. Physical Testing and Chemical Analysis (Part B:Chem.Anal.),, 2010, 46(7): 717-719张海涛, 陈占营, 张利兴, 曾 斌. 理化检验(化学分册), 2010, 46(7): 717-719

    18. [18]

      18 Chen Z Y, Liu S J, Chang Y Z. Chem Res. Chinese Universities, 2012, 28(5): 814-817

    19. [19]

      19 CHEN Zhan-Ying, ZHANG Hai-Tao, WANG Jun, CHANG Yin-Zhong. Chinese Journal of Analysis Laboratory, 2008, 27(z1)suppl.: 315-317陈占营, 张海涛, 王 军, 常印忠. 分析试验室, 2008, 27(z1)增刊: 315-317

    20. [20]

      20 China National Accreditation Service for Conformity Assessment. Guidance on Evaluating the Uncertainty in Chemical Analysis, 2006, CNAS-GL06: 97中国合格评定国家认可委员会. 化学分析中不确定度的评估指南, 2006, CNAS-GL06: 97

    21. [21]

      21 CHEN Zhan-Ying, CHANG Yin-Zhong, WANG Shi-Lian, LIU Shu-Jiang, LI Qi, WANG Jun. Atmomic Energy Science and Technology, 2012, 46(9): 1046-1049陈占营, 常印忠, 王世联, 刘蜀疆, 李 奇, 王 军. 原子能科学技术, 2012, 46(9): 1046-1049

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

Metrics
  • PDF Downloads(0)
  • Abstract views(269)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return