Citation: TAO Zhan-Hua, LIU Jun-Xian, SHI De-Qiang, KANG Jian. Analysis of Staphyloxanthin Biosynthesis Using Single Cell Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 456-461. doi: 10.11895/j.issn.0253-3820.150729 shu

Analysis of Staphyloxanthin Biosynthesis Using Single Cell Raman Spectroscopy

  • Corresponding author: TAO Zhan-Hua, 
  • Received Date: 15 September 2015
    Available Online: 20 November 2015

    Fund Project: 本文系广西自然科学基金(No.2014GXNSFAA118193) (No.2014GXNSFAA118193)广西科学院基本科研业务费资助项目(No.15YJ22SL08)资助 (No.15YJ22SL08)

  • Laser tweezers Raman spectroscopy (LTRS) was used to study the inhibitory effect of indol on staphyloxanthin biosynthesis in Staphylococcus aureus cells and the dynamic changes of this pigment content inside bacterial cells during batch cultivation. The Raman spectra of Staphylococcus aureus cells cultivated for different time and exposed to various doses of indol were acquired. The intensity of 1523 cm-1 band was used for the quantification of staphyloxanthin, in the meantime, the pigment was measured by UV spectrometry. The experimental result showed that an excellent linear relationship existed between the intensities of Raman peak at 1523 cm-1 of bacterial cells and the pigment contents estimated by UV spectrometry, with a correlation coefficient of 0.9772. The spectral data at population level as well as single cell level revealed that indol could inhibit the production of pigment in dose-dependent manner, and the pigment content in bacterial cells incubated with indol decreased by 70%. Under the batch growth condition, the pigment amount in Staphylococcus aureus cells reached the maximum value during the middle exponential growth phase (12 h) and the heterogeneity of pigment content in bacterial cells within certain populations at various time points was relatively small, with RSDs of 39.2% to 61.1%. This investigation indicates that LTRS can be served as a reliable method for the analysis of staphyloxanthin content at single cell level.
  • 加载中
    1. [1]

      1 Lindström S. Single Cell Analysis. Stockholm: Humana Press, 2012: 1-12

    2. [2]

      2 AI Min, LIU Jun-Xian, HUANG Shu-Shi, WANG Gui-Wen, CHEN Xiu-Li, CHEN Zhi-Cheng, YAO Hui-lu. Chinese J. Anal. Chem., 2009, 37(5): 758-763艾 敏, 刘军贤, 黄庶识, 王桂文, 陈秀丽, 陈植成, 姚辉璐. 分析化学, 2009, 37(5): 758-763

    3. [3]

      3 LAI Jun-Zhuo, LIU Bin, WANG Gui-Wen, TAO Zhan-Hua, HUANG Shu-Shi. Spectroscopy and Spectral Analysis, 2011, 31(2): 412-417赖钧灼, 刘 斌, 王桂文, 陶站华, 黄庶识. 光谱学与光谱分析, 2011, 31(2): 412-417

    4. [4]

      4 Xie C, Dinno M A, Li Y Q. Optics Letters, 2002, 27(4): 249-251

    5. [5]

      5 WANG Yan-Jun, YAO Hui-Lu, WANG Gui-Wen, WANG Yun, FENG Mei-Fu. Spectroscopy and Spectral Analysis, 2009, 29(7): 1881-1883王雁军, 姚辉璐, 王桂文, 汪 蕴, 丰美福. 光谱学与光谱分析, 2009, 29(7): 1881-1883

    6. [6]

      6 Xie C G, Li Y Q. J. Appl. Phys., 2003, 93(5): 2982-2986

    7. [7]

      7 ZHOU Bing, LU Ming-Qian, ZHAO Li-Wei, HUANG Shu-Shi, CHEN Li-Mei. Chinese J. Anal. Chem., 2013, 41(12): 1789-1794周 冰, 卢明倩, 赵丽伟, 黄庶识, 陈丽梅. 分析化学, 2013, 41(12): 1789-1794

    8. [8]

      8 Tang H, Yao H, Wang G, Wang Y, Li Y Q, Feng M. Optics Express, 2007, 15(20): 12708-12716

    9. [9]

      9 Tao Z H, Wang G W, Xu X D, Yuan Y F, Wang X, Li Y Q. FEMS Microbiol. Lett., 2011, 314(1): 42-48

    10. [10]

      10 Shao J W, Lin M M, Li Y Q, Li X, Liu J X, Liang J P, Yao H L. Plos One, 2012, 7(10):

    11. [11]

      11 Shao J W, Yao H L, Meng L J, Li Y Q, Lin M M, Li X, Liu J X, Liang J P. Vib Spectrosc, 2012, 63367-63370

    12. [12]

      12 Fitzgerald-Hughes D, Devocelle M, Humphreys H. FEMS Immunol. Med. Microbiol., 2012, 65(3): 399-412

    13. [13]

      13 Clauditz A, Resch A, Wieland K P, Peschel A, Gotz F. Infect. Immun., 2006, 74(8): 4950-4953

    14. [14]

      14 Daum R S. New England J. Med., 2008, 359(1): 85-87

    15. [15]

      15 Oldfield E. Accounts Chem. Res., 2010, 43(9): 1216-1226

    16. [16]

      16 Lee J H, Park J H, Cho M H, Lee J. Current Microbiology, 2012, 65(6): 726-732

    17. [17]

      17 Kocher S, Breitenbach J, Muller V, Sandmann G. Arch. Microbiol., 2009, 191(2): 95-104

    18. [18]

      18 Vitek P, Jehlicka J, Edwards H G, Osterrothova K. Anal. Bioanal. Chem., 2009, 393(8): 1967-1975

    19. [19]

      19 Hintze J L, Nelson R D. Am. Stat, 1998, 52(2): 181-184

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    7. [7]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    8. [8]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    18. [18]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    19. [19]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(0)
  • Abstract views(287)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return