Citation: HAN Zhi-Zhong, WU Yue-Ting, ZHOU Ying, PAN Hai-Bo, CHEN Jing-Hua, LI Chun-Yan. A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 377-384. doi: 10.11895/j.issn.0253-3820.150694 shu

A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets

  • Corresponding author: PAN Hai-Bo, 
  • Received Date: 31 August 2015
    Available Online: 6 January 2016

    Fund Project: 本文系国家自然科学基金(No.21375017) (No.21375017)福建省自然科学基金(No.2015J05020) (No.2015J05020)福建省卫生计生委青年科研课题(No.2014-1-39) (No.2014-1-39)福建医科大学苗圃科研基金(No.2014MP008)资助 (No.2014MP008)

  • ZnO nanoparticles (ZnO NPs) were obtained by a direct precipitation method. With the as-prepared ZnO NPs as seeds, Au/ZnO heterostructure was synthesized by seed-mediated growth method without any surfactant, and the diameters of ZnO NPs and Au NPs were about 50 nm and 10 nm, respectively. Then ionic liquids (ILs), trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide ([P(C6)3C14][Tf2N]), and functionalized graphene (GN) were prepared under room temperature. The ILs as bridges could connect Au/ZnO heterostructure to form a new kind of graphene nanocomposite, Au/ZnO/GN. Then the penicillinase and hematein were immobilized on Au/ZnO/GN. And the biosensors based on penicillinase-hematein-Au/ZnO/GN (PH-AZG) were used for detecting penicillin G. In PBS buffer solution (pH 7.0), PH-AZG exhibited a detection range from 2.5×10-14 to 3.3×10-6 mol/L with a detection limit of 1.5×10-14 mol/L (S/N≥ 3). Five PH-AZG electrodes were prepared with the same conditions, and the RSDs for their current response were less than 3.2%. Furthermore, the standard curves were linear in the range of 5×10-14-5×10-7 mol/L for milk. The average recoveries were 99.7%-101.4% with RSDs of 2.3%-3.5% (n=5). The method is sensitive and repeatable, and can be applied to the field of residue analysis about penicillins G with low concentration levels.
  • 加载中
    1. [1]

      1 Pennacchio A, Varriale A, Scala A, Marzullo V M, Staiano M, D'Auria S. Food Chem., 2016, 190: 381-385

    2. [2]

      2 Piñero M Y, Bauza R, Arce L, Valcárcel M. Talanta, 2014, 119: 75-82

    3. [3]

      3 Samanidou V, Evaggelopoulou E N. Pharm. Anal. Acta, 2015, 6(4): 1000e174

    4. [4]

      4 Bailon-Perez A M, Garcia-Campana M I, del Olmo M, Iruela C-B C. J. Chromatogr. A, 2009, 1216(47): 8355-8361

    5. [5]

      5 Kloth K., Rye-Johnsen M., Dither A., Dietrich R, Märtlbauer E, Niessner R, Seidel M. Analyst, 2009, 134(7): 1433-1439

    6. [6]

      6 Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C. Nanoscale, 2015, 7(39): 16381-16388

    7. [7]

      7 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Chem. Commun., 2009, 45(26): 3880-3882

    8. [8]

      8 XU Xin-Xin, HE Li-Jun, CAI Tian-Pei, YOU Li-Qin, XIANG Guo-Qiang, ZHAO Wen-Jie, JIANG Xiu-Ming. Chinese J. Anal. Chem., 2015, 43(6): 829-835许新新, 何丽君, 蔡天培, 游利琴, 向国强, 赵文杰, 江秀明. 分析化学, 2015, 43(6): 829-835

    9. [9]

      9 Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504-1508

    10. [10]

      10 Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26(8): 3475-3481

    11. [11]

      11 Wang M L, Gao Y Q, Zhang J J, Zhao J W. Electrochim. Acta, 2015, 155: 236-243

    12. [12]

      12 Liu N, Ma Z F. Biosens. Bioelectron., 2014, 51: 184-190

    13. [13]

      13 Arya S K, Saha S, Ramirez-Vick J E, Gupta V, Bhansali S, Singh S P. Anal. Chim. Acta, 2012, 737: 1-21

    14. [14]

      14 Congur G, Ates E S, Afal A, Unalan H E, Erdem A. J. Am. Ceram. Soc., 2015, 98(2): 663-668

    15. [15]

      15 Hwa K-Y, Subramani B. Biosens. Bioelectron., 2014, 62: 127-133

    16. [16]

      16 Wang X, Kong X G, Yu Y, Zhang H. J. Phys. Chem. C, 2007, 111(10): 3836-3841

    17. [17]

      17 Daniel M C, Astruc D. Chem. Rev., 2004, 104(1): 293-346

    18. [18]

      18 Wei Y Y, Li Y, Liu X Q, Xian Y Z, Shi G Y, Jin L T. Biosens. Bioelectron., 2010, 26(1): 275-278

    19. [19]

      19 Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339-1339

    20. [20]

      20 Choi B G, Park H, Park T J, Yang M H, Kim J S. ACS Nano, 2010, 4(5): 2910-2918

    21. [21]

      21 Chen C C, Liu P, Lu C H. Chem. Eng. J., 2008, 144(3): 509-513

    22. [22]

      22 Frens G. Nat. Phys. Sci., 1973, 241(105): 20-22

    23. [23]

      23 Li D, Muller M B, Gilje S, Kaner R B. Nat. Nanotechnol., 2008, 3(2): 101-105

    24. [24]

      24 Kim T Y, Lee H W, Kim J E, Suh K S. ACS Nano, 2010, 4(3): 1612-1618

    25. [25]

      25 Li P, Wei Z, Wu T, Peng Q, Li Y. J. Am. Chem. Soc., 2011, 133(15): 5660-5663

    26. [26]

      26 He C, Sasaki T, Shimizu Y, Koshizaki N. Appl. Surf. Sci., 2008, 254(7): 2196-2202

    27. [27]

      27 Spanhel L, Anderson M A. J. Am. Chem. Soc., 1991, 113(8): 2826-2833

    28. [28]

      28 Stred'ansky M, Pizzariello A, Stred'anská S, Miertuš S. Anal. Chim. Acta, 2000, 415(1-2): 151-157

    29. [29]

      29 Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-M F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 1998, 280(5367): 1253-1256

    30. [30]

      30 Yang C, Xu C, Wang X. Langmuir, 2012, 28(9): 4580-4585

    31. [31]

      31 Chen B, Ma M, Su X. Anal. Chim. Acta, 2010, 674(1): 89-95

    32. [32]

      32 Ibupoto Z H, Ali S M U, Khun K, Chey C O, Nur O, Willander M. Biosen., 2011, 1(4):153-163

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(0)
  • Abstract views(295)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return