Citation: HAN Zhi-Zhong, WU Yue-Ting, ZHOU Ying, PAN Hai-Bo, CHEN Jing-Hua, LI Chun-Yan. A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 377-384. doi: 10.11895/j.issn.0253-3820.150694
-
ZnO nanoparticles (ZnO NPs) were obtained by a direct precipitation method. With the as-prepared ZnO NPs as seeds, Au/ZnO heterostructure was synthesized by seed-mediated growth method without any surfactant, and the diameters of ZnO NPs and Au NPs were about 50 nm and 10 nm, respectively. Then ionic liquids (ILs), trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide ([P(C6)3C14][Tf2N]), and functionalized graphene (GN) were prepared under room temperature. The ILs as bridges could connect Au/ZnO heterostructure to form a new kind of graphene nanocomposite, Au/ZnO/GN. Then the penicillinase and hematein were immobilized on Au/ZnO/GN. And the biosensors based on penicillinase-hematein-Au/ZnO/GN (PH-AZG) were used for detecting penicillin G. In PBS buffer solution (pH 7.0), PH-AZG exhibited a detection range from 2.5×10-14 to 3.3×10-6 mol/L with a detection limit of 1.5×10-14 mol/L (S/N≥ 3). Five PH-AZG electrodes were prepared with the same conditions, and the RSDs for their current response were less than 3.2%. Furthermore, the standard curves were linear in the range of 5×10-14-5×10-7 mol/L for milk. The average recoveries were 99.7%-101.4% with RSDs of 2.3%-3.5% (n=5). The method is sensitive and repeatable, and can be applied to the field of residue analysis about penicillins G with low concentration levels.
-
-
[1]
1 Pennacchio A, Varriale A, Scala A, Marzullo V M, Staiano M, D'Auria S. Food Chem., 2016, 190: 381-385
-
[2]
2 Piñero M Y, Bauza R, Arce L, Valcárcel M. Talanta, 2014, 119: 75-82
-
[3]
3 Samanidou V, Evaggelopoulou E N. Pharm. Anal. Acta, 2015, 6(4): 1000e174
-
[4]
4 Bailon-Perez A M, Garcia-Campana M I, del Olmo M, Iruela C-B C. J. Chromatogr. A, 2009, 1216(47): 8355-8361
-
[5]
5 Kloth K., Rye-Johnsen M., Dither A., Dietrich R, Märtlbauer E, Niessner R, Seidel M. Analyst, 2009, 134(7): 1433-1439
-
[6]
6 Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C. Nanoscale, 2015, 7(39): 16381-16388
-
[7]
7 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Chem. Commun., 2009, 45(26): 3880-3882
-
[8]
8 XU Xin-Xin, HE Li-Jun, CAI Tian-Pei, YOU Li-Qin, XIANG Guo-Qiang, ZHAO Wen-Jie, JIANG Xiu-Ming. Chinese J. Anal. Chem., 2015, 43(6): 829-835许新新, 何丽君, 蔡天培, 游利琴, 向国强, 赵文杰, 江秀明. 分析化学, 2015, 43(6): 829-835
-
[9]
9 Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504-1508
-
[10]
10 Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26(8): 3475-3481
-
[11]
11 Wang M L, Gao Y Q, Zhang J J, Zhao J W. Electrochim. Acta, 2015, 155: 236-243
-
[12]
12 Liu N, Ma Z F. Biosens. Bioelectron., 2014, 51: 184-190
-
[13]
13 Arya S K, Saha S, Ramirez-Vick J E, Gupta V, Bhansali S, Singh S P. Anal. Chim. Acta, 2012, 737: 1-21
-
[14]
14 Congur G, Ates E S, Afal A, Unalan H E, Erdem A. J. Am. Ceram. Soc., 2015, 98(2): 663-668
-
[15]
15 Hwa K-Y, Subramani B. Biosens. Bioelectron., 2014, 62: 127-133
-
[16]
16 Wang X, Kong X G, Yu Y, Zhang H. J. Phys. Chem. C, 2007, 111(10): 3836-3841
-
[17]
17 Daniel M C, Astruc D. Chem. Rev., 2004, 104(1): 293-346
-
[18]
18 Wei Y Y, Li Y, Liu X Q, Xian Y Z, Shi G Y, Jin L T. Biosens. Bioelectron., 2010, 26(1): 275-278
-
[19]
19 Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339-1339
-
[20]
20 Choi B G, Park H, Park T J, Yang M H, Kim J S. ACS Nano, 2010, 4(5): 2910-2918
-
[21]
21 Chen C C, Liu P, Lu C H. Chem. Eng. J., 2008, 144(3): 509-513
-
[22]
22 Frens G. Nat. Phys. Sci., 1973, 241(105): 20-22
-
[23]
23 Li D, Muller M B, Gilje S, Kaner R B. Nat. Nanotechnol., 2008, 3(2): 101-105
-
[24]
24 Kim T Y, Lee H W, Kim J E, Suh K S. ACS Nano, 2010, 4(3): 1612-1618
-
[25]
25 Li P, Wei Z, Wu T, Peng Q, Li Y. J. Am. Chem. Soc., 2011, 133(15): 5660-5663
-
[26]
26 He C, Sasaki T, Shimizu Y, Koshizaki N. Appl. Surf. Sci., 2008, 254(7): 2196-2202
-
[27]
27 Spanhel L, Anderson M A. J. Am. Chem. Soc., 1991, 113(8): 2826-2833
-
[28]
28 Stred'ansky M, Pizzariello A, Stred'anská S, Miertuš S. Anal. Chim. Acta, 2000, 415(1-2): 151-157
-
[29]
29 Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-M F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 1998, 280(5367): 1253-1256
-
[30]
30 Yang C, Xu C, Wang X. Langmuir, 2012, 28(9): 4580-4585
-
[31]
31 Chen B, Ma M, Su X. Anal. Chim. Acta, 2010, 674(1): 89-95
-
[32]
32 Ibupoto Z H, Ali S M U, Khun K, Chey C O, Nur O, Willander M. Biosen., 2011, 1(4):153-163
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[3]
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
-
[4]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[5]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[6]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[7]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[10]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[11]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[12]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[13]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[14]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[15]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[16]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[17]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[18]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[19]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[20]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(295)
- HTML views(27)