Citation: HAN Zhi-Zhong, WU Yue-Ting, ZHOU Ying, PAN Hai-Bo, CHEN Jing-Hua, LI Chun-Yan. A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 377-384. doi: 10.11895/j.issn.0253-3820.150694 shu

A Low Detection Limit Penicillin Electrochemical Biosensor Based on Penicillinase-Hematein Au/ZnO/Single Graphene Nanosheets

  • Corresponding author: PAN Hai-Bo, 
  • Received Date: 31 August 2015
    Available Online: 6 January 2016

    Fund Project: 本文系国家自然科学基金(No.21375017) (No.21375017)福建省自然科学基金(No.2015J05020) (No.2015J05020)福建省卫生计生委青年科研课题(No.2014-1-39) (No.2014-1-39)福建医科大学苗圃科研基金(No.2014MP008)资助 (No.2014MP008)

  • ZnO nanoparticles (ZnO NPs) were obtained by a direct precipitation method. With the as-prepared ZnO NPs as seeds, Au/ZnO heterostructure was synthesized by seed-mediated growth method without any surfactant, and the diameters of ZnO NPs and Au NPs were about 50 nm and 10 nm, respectively. Then ionic liquids (ILs), trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide ([P(C6)3C14][Tf2N]), and functionalized graphene (GN) were prepared under room temperature. The ILs as bridges could connect Au/ZnO heterostructure to form a new kind of graphene nanocomposite, Au/ZnO/GN. Then the penicillinase and hematein were immobilized on Au/ZnO/GN. And the biosensors based on penicillinase-hematein-Au/ZnO/GN (PH-AZG) were used for detecting penicillin G. In PBS buffer solution (pH 7.0), PH-AZG exhibited a detection range from 2.5×10-14 to 3.3×10-6 mol/L with a detection limit of 1.5×10-14 mol/L (S/N≥ 3). Five PH-AZG electrodes were prepared with the same conditions, and the RSDs for their current response were less than 3.2%. Furthermore, the standard curves were linear in the range of 5×10-14-5×10-7 mol/L for milk. The average recoveries were 99.7%-101.4% with RSDs of 2.3%-3.5% (n=5). The method is sensitive and repeatable, and can be applied to the field of residue analysis about penicillins G with low concentration levels.
  • 加载中
    1. [1]

      1 Pennacchio A, Varriale A, Scala A, Marzullo V M, Staiano M, D'Auria S. Food Chem., 2016, 190: 381-385

    2. [2]

      2 Piñero M Y, Bauza R, Arce L, Valcárcel M. Talanta, 2014, 119: 75-82

    3. [3]

      3 Samanidou V, Evaggelopoulou E N. Pharm. Anal. Acta, 2015, 6(4): 1000e174

    4. [4]

      4 Bailon-Perez A M, Garcia-Campana M I, del Olmo M, Iruela C-B C. J. Chromatogr. A, 2009, 1216(47): 8355-8361

    5. [5]

      5 Kloth K., Rye-Johnsen M., Dither A., Dietrich R, Märtlbauer E, Niessner R, Seidel M. Analyst, 2009, 134(7): 1433-1439

    6. [6]

      6 Chen Y, Wang Y, Liu L, Wu X, Xu L, Kuang H, Li A, Xu C. Nanoscale, 2015, 7(39): 16381-16388

    7. [7]

      7 Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Chem. Commun., 2009, 45(26): 3880-3882

    8. [8]

      8 XU Xin-Xin, HE Li-Jun, CAI Tian-Pei, YOU Li-Qin, XIANG Guo-Qiang, ZHAO Wen-Jie, JIANG Xiu-Ming. Chinese J. Anal. Chem., 2015, 43(6): 829-835许新新, 何丽君, 蔡天培, 游利琴, 向国强, 赵文杰, 江秀明. 分析化学, 2015, 43(6): 829-835

    9. [9]

      9 Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504-1508

    10. [10]

      10 Guo S J, Wen D, Zhai Y M, Dong S J, Wang E K. Biosens. Bioelectron., 2011, 26(8): 3475-3481

    11. [11]

      11 Wang M L, Gao Y Q, Zhang J J, Zhao J W. Electrochim. Acta, 2015, 155: 236-243

    12. [12]

      12 Liu N, Ma Z F. Biosens. Bioelectron., 2014, 51: 184-190

    13. [13]

      13 Arya S K, Saha S, Ramirez-Vick J E, Gupta V, Bhansali S, Singh S P. Anal. Chim. Acta, 2012, 737: 1-21

    14. [14]

      14 Congur G, Ates E S, Afal A, Unalan H E, Erdem A. J. Am. Ceram. Soc., 2015, 98(2): 663-668

    15. [15]

      15 Hwa K-Y, Subramani B. Biosens. Bioelectron., 2014, 62: 127-133

    16. [16]

      16 Wang X, Kong X G, Yu Y, Zhang H. J. Phys. Chem. C, 2007, 111(10): 3836-3841

    17. [17]

      17 Daniel M C, Astruc D. Chem. Rev., 2004, 104(1): 293-346

    18. [18]

      18 Wei Y Y, Li Y, Liu X Q, Xian Y Z, Shi G Y, Jin L T. Biosens. Bioelectron., 2010, 26(1): 275-278

    19. [19]

      19 Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339-1339

    20. [20]

      20 Choi B G, Park H, Park T J, Yang M H, Kim J S. ACS Nano, 2010, 4(5): 2910-2918

    21. [21]

      21 Chen C C, Liu P, Lu C H. Chem. Eng. J., 2008, 144(3): 509-513

    22. [22]

      22 Frens G. Nat. Phys. Sci., 1973, 241(105): 20-22

    23. [23]

      23 Li D, Muller M B, Gilje S, Kaner R B. Nat. Nanotechnol., 2008, 3(2): 101-105

    24. [24]

      24 Kim T Y, Lee H W, Kim J E, Suh K S. ACS Nano, 2010, 4(3): 1612-1618

    25. [25]

      25 Li P, Wei Z, Wu T, Peng Q, Li Y. J. Am. Chem. Soc., 2011, 133(15): 5660-5663

    26. [26]

      26 He C, Sasaki T, Shimizu Y, Koshizaki N. Appl. Surf. Sci., 2008, 254(7): 2196-2202

    27. [27]

      27 Spanhel L, Anderson M A. J. Am. Chem. Soc., 1991, 113(8): 2826-2833

    28. [28]

      28 Stred'ansky M, Pizzariello A, Stred'anská S, Miertuš S. Anal. Chim. Acta, 2000, 415(1-2): 151-157

    29. [29]

      29 Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-M F, Shon Y S, Lee T R, Colbert D T, Smalley R E. Science, 1998, 280(5367): 1253-1256

    30. [30]

      30 Yang C, Xu C, Wang X. Langmuir, 2012, 28(9): 4580-4585

    31. [31]

      31 Chen B, Ma M, Su X. Anal. Chim. Acta, 2010, 674(1): 89-95

    32. [32]

      32 Ibupoto Z H, Ali S M U, Khun K, Chey C O, Nur O, Willander M. Biosen., 2011, 1(4):153-163

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    8. [8]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    19. [19]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(0)
  • Abstract views(469)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return