Citation: GUI Jian-Ye, SUN Wei, ZHANG Chen-Ling, ZHANG Yong-Tao, ZHANG Li, LIU Fei. An Innovative Approach to Sensitive Artificial Sweeteners Analysis by Ion Chromatography-Triple Quadrupole Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2016, 44(3): 361-366. doi: 10.11895/j.issn.0253-3820.150689 shu

An Innovative Approach to Sensitive Artificial Sweeteners Analysis by Ion Chromatography-Triple Quadrupole Mass Spectrometry

  • Corresponding author: LIU Fei, 
  • Received Date: 28 August 2015
    Available Online: 4 December 2015

    Fund Project: 本文系国家自然科学基金项目(No.42172252)资助 (No.42172252)

  • Artificial sweeteners (ASs) have gained more and more attention by environmental scientists because some of them such as acesulfame, have the potential to be the ideal tracers of domestic wastewater for environmental monitoring. In contrast to the existing methods of artificial sweeteners, the analytical method of ASs as a new tracer for environmental samples requires better sensitivity and selectivity to avoid matrix interference. A highly sensitive method for the simultaneous determination of four frequently-used artificial sweeteners in water samples using solid-phase extraction and ion chromatography triple quadrupole mass spectrometer with an electrospray ionization source (IC-MS/MS) in negative ion mode was developed. The separation effect of different separation columns was compared and a 2-mm ion chromatography column AS19 was chosen in the experiment. Chromatographic separation of all the 4 artificial sweeteners was carried out in 9 min in isocratic elution mode using 60 mmol/L sodium hydroxide as eluent. Different kinds of solid phase extraction cartridges were evaluated to obtain satisfactory recoveries of all of the analytes. Merk LiChrolut EN (200 mg, 3 mL) was preconditioned with 2 mL of methanol, followed by 2 mL of H2O. About 200 mL of sample (pH<2.0) was passed through the cartridge at a flow rate of 4 mL/min, and then the cartridge was eluted using 2 mL of methanol. 2 mm suppresser (75 mA) was used to reduce the background noise and to remove the matrix interference. The limits of detection were below 5.0 ng/L for various artificial sweeteners based on 3-fold the S/N. The recoveries of different matrices in the samples were 65%-120%. The method described here is time-saving, accurate and precise, and is suitable for monitoring artificial sweeteners in different water matrices. The method has also the potential to trace other contaminants in groundwater.
  • 加载中
    1. [1]

      1 Buerge I J, Buser H R, Kahle M, Müller M D, Poiger T. Environ. Sci. Technol., 2009, 43(12): 4381-4385

    2. [2]

      2 Buerge I J, Keller M, Buser H R, Müller M D, Poiger T. Environ. Sci. Technol., 2010, 45(2): 615-621

    3. [3]

      3 Oppenheimer J, Eaton A, Badruzzaman M, Haghani A W, Jacangelo J G. Water Res., 2011, 45(13): 4019-4027

    4. [4]

      4 Liu Y Y, Blowes D W, Groza L, Sabourin M J, Ptacek C J. Environ. Sci. Proc. Imp., 2014, 16(12): 2789-2795

    5. [5]

      5 Wasik A, McCourt J, Buchgraber M. J. Chromatogr. A, 2007, 1157(1-2): 187-196

    6. [6]

      6 LIU Li-Min, PENG Jing-Dong. Journal of Instrumental Analysis, 2008, 27(5): 549-552刘丽敏, 彭敬东. 分析测试学报, 2008, 27(5): 549-552

    7. [7]

      7 Mazurek S, Szostak R. Food Chem., 2011, 125(3): 1051-1057

    8. [8]

      8 ZHANG Ya-Heng, ZHOU Wei, LI Bin. Chinese J. Anal. Chem., 2013, 41(6): 911-916张雅珩, 周 围, 李 斌. 分析化学, 2013, 41(6): 911-916

    9. [9]

      9 Yang D J, Chen B. J. Agric. Food Chem., 2009, 57(8): 3022-3027

    10. [10]

      10 Scheurer M, Brauch H J, Lange F T. Anal. Bioanal. Chem., 2009, 394(6): 1585-1594

    11. [11]

      11 Gan Z W, Sun H W, Wang R N, Feng B T. J. Chromatogr. A, 2013, 1274: 87-96

    12. [12]

      12 Berset J D, Ochsenbein N. Chemosphere, 2012, 88(5): 563-569

    13. [13]

      13 Ordoñez E Y, Quintana J B, Rodil R, Cela R. J. Chromatogr. A, 2013, 1320: 10-16

    14. [14]

      14 Wu M H, Qian Y C, Boyd J M, Hrudey S E, Le X C, Li X F. J. Chromatogr. A, 2014, 1359: 156-161

    15. [15]

      15 Tran N H, Hu J, Ong S L. Talanta, 2013, 113: 82-92

    16. [16]

      16 Ens W, Senner F, Gygax B. Schlotterbeck G. Anal. Bioanal. Chem., 2014, 406(12): 2789-2798

    17. [17]

      17 van Stempvoort D R, Roy J W, Grabuski J, Brown S J, Bickerton G, Sverko E. Sci. Total Environ., 2013, 461-462: 348-359

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    6. [6]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    12. [12]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    13. [13]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    14. [14]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    17. [17]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

Metrics
  • PDF Downloads(0)
  • Abstract views(389)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return