Citation: Chuan′an DING, Weibo YAN, Shaoying WANG, Hao XIN. Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198 shu

Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method

  • Corresponding author: Hao XIN, iamhxin@njupt.edu.cn
  • Received Date: 10 June 2025
    Revised Date: 23 July 2025

Figures(5)

  • Cu(In, Ga)S2 semiconductor thin films were fabricated via a blading method using metal salts and thiourea precursor solutions. The influence of the Ga to Ga+In ratio (GGI) on material properties and solar cell performance was systematically investigated. Results demonstrated that the band gap of Cu(In, Ga)S2 progressively widens with increasing GGI. While moderate GGI can enhance grain growth and improve device open-circuit voltage (VOC) and fill factor (FF), excessive Ga incorporation hinders crystallinity and degrades photovoltaic performance. Optimal performance was achieved at GGI of 0.25, yielding a band gap of 1.69 eV, and a record photoelectric conversion efficiency of 9.06% for solution-processed wide-band gap Cu(In, Ga)S2 solar cells, representing a 37.48% improvement over Ga-free reference devices. Further analysis confirms that Ga alloying effectively reduces both bulk and interfacial defect densities, improves heterojunction interface quality, and significantly suppresses carrier recombination.
  • 加载中
    1. [1]

      GREEN M A, DUNLOP E D, YOSHITA M, KOPIDAKIS N, BOTHE K, SIEFER G, HAO X J, JIANG J Y. Solar cell efficiency tables (version 66)[J]. Prog. Photovoltaics, 2025, 23(7): 425-441

    2. [2]

      RÜHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Sol. Energy, 2016, 130: 139-147  doi: 10.1016/j.solener.2016.02.015

    3. [3]

      MARKVART T. Shockley: Queisser detailed balance limit after 60 years[J]. Wiley Interdiscip. Rev. Energy Environ., 2022, 11(4): e430

    4. [4]

      VOS A D. Detailed balance limit of the efficiency of tandem solar cells[J]. J. Phys. D: Appl. Phys., 1980, 13(5): 839-846  doi: 10.1088/0022-3727/13/5/018

    5. [5]

      MEILLAUD F, SHAH A, DROZ C, VALLST S E, MIAZZA C. Efficiency limits for single-junction and tandem solar cells[J]. Sol. Energy Mater. Sol. Cells, 2006, 90(18/19): 2952-2959

    6. [6]

      LIU J, HE Y C, DING L, ZHANG H, LI Q Y, JIA L B, YU J, LAU T W, LI M H, QIN Y, GU X B, ZHANG F, LI Q, YANG Y, ZHAO S S, WU X Y, LIU J, LIU T, GAO Y J, WANG Y L, DONG X, CHEN H, LI P, ZHOU T X, YANG M, RU X N, PENG F G, YIN S, QU M H, ZHAO D M, ZHAO Z G, LI M L, GUO P H, YAN H, XIAO C X, XIAO P, YIN J, ZHANG X H, LI Z G, HE B, XU X X. Perovskite/silicon tandem solar cells with bilayer interface passivation[J]. Nature, 2024, 635(8039): 596-603  doi: 10.1038/s41586-024-07997-7

    7. [7]

      WANG Y R, LIN R X, LIU C S, WANG X Y, CHOSY C, HARUTA Y, BUI A D, LI M H, SUN H F, ZHENG X T, LUO H W, WU P, GAO H, SUN W J, NIE Y F, ZHU H S, ZHOU K, NGUYEN H T, LUO X, LI L D, XIAO C X, SAIDAMINOV M I, STRANKS S D, ZHANG L J, TAN H R. Homogenized contact in all-perovskite tandems using tailored 2D perovskite[J]. Nature, 2024, 635(8040): 867-873  doi: 10.1038/s41586-024-08158-6

    8. [8]

      SHUKLA S, SOOD M, ADELEYE D, PEEDLE S, KUSCH G, DAHLIAH D, MELCHIORRE M, RIGNANESE G M, HAUTIER G, OLIVER R, SIEBENTRITT S. Over 15% efficient wide-band-gap Cu(In, Ga)S2 solar cell: Suppressing bulk and interface recombination through composition engineering[J]. Joule, 2021, 5(7): 1816-1831  doi: 10.1016/j.joule.2021.05.004

    9. [9]

      KAZMERSKI L L, WHITE F R, AYYAGARI M S, JUANG Y J, PATTERSON R P. Growth and characterization of thin-film compound semiconductor photovoltaic heterojunctions[J]. J. Vac. Sci. Technol. A, 1977, 14(1): 65-68  doi: 10.1116/1.569173

    10. [10]

      WATANABE T, MATSUI M. Improved efficiency of CuInS2-based solar cells without potassium cyanide process[J]. Jpn. J. Appl. Phys., 1999, 38(12A): L1379-L1381  doi: 10.1143/JJAP.38.L1379

    11. [11]

      HIROI H, IWATA Y, ADACHI S, SUGIMOTO H, YAMADA A. New world-record efficiency for pure-sulfide Cu(In, Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process[J]. IEEE J. Photovolt., 2016, 6(3): 760-763  doi: 10.1109/JPHOTOV.2016.2537540

    12. [12]

      MERDES S, ABOU-RAS D, MAINZ R, KLENK R, LUX-STEINER M C, MEEDER A, SCHOCK H W, KLAER J. CdS/Cu(In, Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process[J]. Prog. Photovoltaics, 2013, 21(1): 88-93  doi: 10.1002/pip.2165

    13. [13]

      HIROI H, IWATA Y, HORIGUCHI K, SUGIMOTO H. 960-mV open-circuit voltage chalcopyrite solar cell[J]. IEEE J. Photovolt., 2015, 6(1): 309-312

    14. [14]

      OH Y, WOO K, LEE D, LEE H, KIM K, KIM I, ZHONG Z, JEONG S, MOON J. Role of anions in aqueous sol-gel process enabling flexible Cu(In, Ga)S2 thin-film solar cells[J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 17740-17747  doi: 10.1021/am504194t

    15. [15]

      BARANGE N, CHU V B, NAM M, AHN I H, KIM Y D, HAN I K, MIN B K, KO D H. Ordered nanoscale heterojunction architecture for enhanced solution-based CuInGaS2 thin film solar cell performance[J]. Adv. Energy Mater., 2016, 6(24): 1601114  doi: 10.1002/aenm.201601114

    16. [16]

      IKEDA S, NONOGAKI M, SEPTINA W, GUNAWAN G, MATSUMURA M. Fabrication of CuInS2 and Cu(In, Ga)S2 thin films by a facile spray pyrolysis and their photovoltaic and photoelectro-chemical properties[J]. Catal. Sci. Technol., 2013, 3(7): 1849-1854  doi: 10.1039/c3cy00020f

    17. [17]

      SOHN S H, HAN N S, YONG J P, PARK S M, AN H S, KIM D W, MIN B K, SONG J K. Band gap grading and photovoltaic performance of solution-processed Cu(In, Ga)S2 thin-film solar cells[J]. Phys. Chem. Chem. Phys., 2014, 16(48): 27112-27118  doi: 10.1039/C4CP03243H

    18. [18]

      LI X Y, MA C F, LIU N Y, XIANG C X, WEI S X, YAN W B, HUANG W, XIN H. Back contact plasma treatment enables 14.5% efficient solution-processed CuIn(S, Se)2 solar cells[J]. Adv. Funct. Mater., 2024, 34(8): 2310124  doi: 10.1002/adfm.202310124

    19. [19]

      HAN S Q, JIANG J J, LIU X G, LI B Y, ZHANG K J, HAO S S, YU S T, YAN W B, XIN H. Chemical-bath-deposited Zn(S, O) buffer achieves 12.0% efficient solution-processed CIGS solar cells[J]. ACS Appl. Energy Mater., 2022, 5: 12336-12346  doi: 10.1021/acsaem.2c01926

    20. [20]

      JIANG J J, YU S T, GONG Y C, XIN H. 10.3% efficient CuIn(S, Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure[J]. Sol. RRL, 2018, 2(6): 1800044  doi: 10.1002/solr.201800044

    21. [21]

      JIANG J J, GIRIDHARAGOPAL R, JEDLICKA E, SUN K W, YU S T, WU S P, GONG Y C, YAN W B, GINGER D S, GREEN M A, HAO X J, HUANG W, XIN H. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution[J]. Nano Energy, 2020, 69: 104438  doi: 10.1016/j.nanoen.2019.104438

    22. [22]

      WU S P, JIANG J J, YU S T, GONG Y C, YAN W B, XIN H, HUANG W. Over 12% efficient low-bandgap CuIn(S, Se)2 solar cells with the absorber processed from aqueous metal complexes solution in air[J]. Nano Energy, 2019, 62: 818-822  doi: 10.1016/j.nanoen.2019.06.010

    23. [23]

      KWON I, NAGAI T, ISHIZUKA S, TAMPO H, SHIBATA H, KIM S, KIM Y. Improving the performance of pure sulfide Cu(In, Ga)S2 solar cells via injection annealing system[J]. Curr. Appl Phys., 2021, 22: 71-76  doi: 10.1016/j.cap.2020.12.004

    24. [24]

      ELANGO I, SELVAMANI M, RAMAMURTHY P C, KESAVAN A V. Studying VOC in lead free inorganic perovskite photovoltaics by tuning energy bandgap and defect density[J]. Ceram. Int., 2022, 48(19): 29414-29420  doi: 10.1016/j.ceramint.2022.06.125

    25. [25]

      BELGHACHI A, LIMAM N. Effect of the absorber layer band-gap on CIGS solar cell[J]. Chin. J. Phys., 2017, 55(4): 1127-1134  doi: 10.1016/j.cjph.2017.01.011

    26. [26]

      GHORBANI T, ZAHEDIFAR M, MORADI M, GHANBARI E. Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells[J]. Optik, 2020, 223: 165541  doi: 10.1016/j.ijleo.2020.165541

    27. [27]

      HAN A J, SUN Y, ZHANG Y, LIU X H, MENG F Y, LIU Z X. Comparative study of the role of Ga in CIGS solar cells with different thickness[J]. Thin Solid Films, 2016, 598: 189-194  doi: 10.1016/j.tsf.2015.12.020

    28. [28]

      ZHAO Y H, CHEN X Y, CHEN S, ZHENG Z H, SU Z H, MA H L, ZHANG X H, LIANG G X. Energy band alignment and defect synergistic regulation enable air-solution-processed kesterite solar cells with the lowest VOC deficit[J]. Adv. Mater., 2025, 37(8): 2409327  doi: 10.1002/adma.202409327

    29. [29]

      CARRON R, ANDRES C, AVANCINI E, FEURER T, NISHIWAKI S, PISONI S, FU F, LINGG M, ROMANYUK Y E, BUECHELER S, TIWARI A N. Bandgap of thin film solar cell absorbers: A comparison of various determination methods[J]. Thin Solid Films, 2019, 669: 482-486  doi: 10.1016/j.tsf.2018.11.017

    30. [30]

      LOMUSCIO A, RÖDEL T, SCHWARZ T, GAULT B, MELCHIORRE M, RAABE D, SIEBENTRITT S. Quasi-Fermi-level splitting of Cu-poor and Cu-rich CuInS2 absorber layers[J]. Phys. Rev. Appl., 2019, 11(5): 054052  doi: 10.1103/PhysRevApplied.11.054052

    31. [31]

      LOMUSCIO A, RÖDEL T, SCHWARZ T, GAULT B, MELCHIORRE M, RAABE D, SIEBENTRITT S. How photoluminescence can predict the efficiency of solar cells[J]. J. Phys. Mater., 2021, 4(4): 042010  doi: 10.1088/2515-7639/ac266e

    32. [32]

      SHIRAKATA S, NAKADA T. Time-resolved photoluminescence in Cu(In, Ga)Se2 thin films and solar cells[J]. Thin Solid Films, 2007, 515(15): 6151-6154  doi: 10.1016/j.tsf.2006.12.040

    33. [33]

      SIEMER K, KLAER J, LUCK I, BRUNS J, KLENK R, BRÄUNIG D. Efficient CuInS2 solar cells from a rapid thermal process (RTP)[J]. Sol. Energy Mater. Sol. Cells, 2001, 67(1/2/3/4): 159-166

    34. [34]

      HE G J, YAN C, LI J J, YUAN X J, SUN K W, HUANG J L, SUN H, HE M R, ZHANG Y F, STRIDE J A, GREEN M A, HAO X J. 11.6% efficient pure sulfide Cu(In, Ga)S2 solar cell through a Cu-deficient and KCN-free process[J]. ACS Appl. Energy Mater., 2020, 3(12): 11974-11980  doi: 10.1021/acsaem.0c02158

    35. [35]

      CHANG Y H, CARRON R, OCHOA M, BOZAL-GINESTA C, TIWARI A N, DURRANT J R, STEIER L. Insights from transient absorption spectroscopy into electron dynamics along the Ga‑ gradient in Cu(In, Ga)Se2 solar cells[J]. Adv. Energy Mater., 2021, 11(8): 2003446  doi: 10.1002/aenm.202003446

    36. [36]

      LI J J, WANG H X, LUO M, TANG J, CHEN C, LIU W, LIU F F, SUN Y, HAN J B, ZHANG Y. 10% efficiency Cu2ZnSn(S, Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Sol. Energy Mater. Sol. Cells, 2016, 149: 242-249  doi: 10.1016/j.solmat.2016.02.002

    37. [37]

      GONG Y C, ZHU Q, LI B Y, WANG S S, DUAN B W, LOU L C, XIANG C X, JEDLICKA E, GIRIDHARAGOPAL R, ZHOU Y G, DAI Q, YAN W B, CHEN S Y, MENG Q B, XIN H. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nat. Energy, 2022, 7(10): 966-977  doi: 10.1038/s41560-022-01132-4

    38. [38]

      HEATH J, ZABIEROWSKI P. Capacitance spectroscopy of thin-film solar cells[M]//ABOURAS D, KIRCHARTZ T, RAU U. Advanced characterization techniques for thin film solar cells: Vol. 1 and 2. 2nd ed. [S. l. ]: Wiley-VCH, 2016: 93-119

    39. [39]

      WU T, CHEN S, SU Z H, WANG Z, LUO P, ZHENG Z H, LUO J T, MA H L, ZHANG X H, LIANG G X. Heat treatment in an oxygen-rich environment to suppress deep-level traps in Cu2ZnSnS4 solar cell with 11.51% certified efficiency[J]. Nat. Energy, 2025, 10(5): 1-11

    40. [40]

      SU Z H, LIANG G X, FAN P, LUO J T, ZHENG Z H, XIE Z G, WANG W, CHEN S, HU J G, WEI Y D, YAN C, HUANG J L, HAO X J, LIU F Y. Device post annealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Adv. Mater., 2020, 32(32): 2000121  doi: 10.1002/adma.202000121

    41. [41]

      KELLER J, KISELMAN K, DONZEL-GARGAND O, MARTIN N M, BABUCCI M, LUNDBERG O, WALLIN E, STOLT L, EDOFF M. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency[J]. Nat. Energy, 2024, 9(4): 467-478  doi: 10.1038/s41560-024-01472-3

    42. [42]

      ZHAO Y H, YUAN S J, KOU D X, ZHOU Z J, WANG X S, XIAO H Q, DENG Y Q, CUI C C, CHANG Q Q, WU S X. High efficiency CIGS solar cells by bulk defect passivation through Ag substituting strategy[J]. ACS Appl. Mater. Interfaces, 2020, 12(11): 12717-12726  doi: 10.1021/acsami.9b21354

    43. [43]

      HAO S S, YU S T, LIU X G, LI B Y, HAN S Q, XIN H, YAN W B, HUANG W. Effect of K doping on the performance of aqueous solution-processed Cu(In, Ga)Se2 solar cell[J]. Adv. Energy Sustain. Res., 2022, 3(7): 2200006  doi: 10.1002/aesr.202200006

  • 加载中
    1. [1]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    6. [6]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    7. [7]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    10. [10]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    11. [11]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    12. [12]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    13. [13]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    17. [17]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    18. [18]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

Metrics
  • PDF Downloads(1)
  • Abstract views(128)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return