Applications of nickel-based metal-organic framework compounds in supercapacitors
- Corresponding author: Rongmei ZHU, rmzhu@yzu.edu.cn
Citation:
Yijing GU, Huan PANG, Rongmei ZHU. Applications of nickel-based metal-organic framework compounds in supercapacitors[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(10): 2029-2038.
doi:
10.11862/CJIC.20250186
SANATI S, ABAZARI R, ALBERO J, MORSALI A, GARCÍA H, LIANG Z B, ZOU R Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angew. Chem.‒Int. Edit., 2021, 60: 11048-11067
doi: 10.1002/anie.202010093
HONG C N, CROM A B, FELDBLYUM J I, LUKATSKAYA M R. Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities[J]. Chem, 2023, 9: 798-822
doi: 10.1016/j.chempr.2023.02.016
YU J H, HE K, LI M Y, YANG Z G, CHEN Q Q, FAN B B. Research progress of metal-organic framework derivatives in the field of energy storage[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(7): 2680-2692
WANG R, GAO J L, VIJAYALAKSHMI M, TANG H, CHEN K, REDDY C V, KAKARLA R R, ANJANA P M, REZAKAZEMI M, CHEOLHO B, SHIM J, AMINABHAVI T M. Metal-organic frameworks and their composites: Design, synthesis, properties, and energy storage applications[J]. Chem. Eng. J., 2024, 496: 154294
doi: 10.1016/j.cej.2024.154294
LI S, LIN J D, XIONG W M, GUO X Y, WU D Y, ZHANG Q B, ZHU Q L, ZHANG L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage[J]. Coord. Chem. Rev., 2021, 438: 213872
doi: 10.1016/j.ccr.2021.213872
XING X X, LIU J S, ZHU Y, ZHENG D X, GUO X, WU S J, GUO X J, ZHANG H X, LIU S Z. Progress of electrode materials in flexible supercapacitors[J]. Fine Chemicals, 2025, 42(6): 1221-1230
ZHAO W W, JIANG M Y, WANG W K, LIU S J, HUANG W, ZHAO Q. Flexible transparent supercapacitors: Materials and devices[J]. Adv. Funct. Mater., 2021, 31: 2009136
doi: 10.1002/adfm.202009136
GIRIRAJAN M, BOJARAJAN A K, PULIDINDI I N, HUI K N, SANGARAJU S. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors[J]. Coord. Chem. Rev., 2024, 518: 216080
doi: 10.1016/j.ccr.2024.216080
WANG D G, LIANG Z B, GAO S, QU C, ZOU R Q. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coord. Chem. Rev., 2020, 404: 213093
doi: 10.1016/j.ccr.2019.213093
SOWBAKKIYAVATHI E S, KUMAR S P A, MAURYA D K, BALAKRISHNAN B, GUO J Z, SUBRAMANIA A. Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors[J]. Adv. Compos. Hybrid Mater., 2024, 7: 130
doi: 10.1007/s42114-024-00913-7
ZHANG Y, MEI H X, CAO Y, YAN X H, YAN J, GAO H L, LUO H W, WANG S W, JIA X D, KACHALOVA L, YANG J, XUE S C, ZHOU C G, WANG L X, GUI Y H. Recent advances and challenges of electrode materials for flexible supercapacitors[J]. Coord. Chem. Rev., 2021, 438: 213910
doi: 10.1016/j.ccr.2021.213910
HUANG J, XIE Y P, YOU Y, YUAN J L, XU Q Q, XIE H B, CHEN Y W. Rational design of electrode materials for advanced supercapacitors: From lab research to commercialization[J]. Adv. Funct. Mater., 2023, 33: 22130995
LIU L M, ZHANG Y, SONG Y Z, GU Y J, PANG H, ZHU R M. Successful in situ growth of conductive MOFs on 2D cobalt-based compounds and their electrochemical performance[J]. Inorg. Chem., 2024, 63: 10324-10334
doi: 10.1021/acs.inorgchem.4c01168
SU Y C, ZHANG Y F, FENG W C, ZHANG G X, SUN Y Y, YIN C H, YUAN G Q, TANG Y J, ZHOU W F, CHEN H C, PANG H. Monocarboxylic acid structural analogues facilitate in situ composite of functional complexes for aqueous batteries[J]. Angew. Chem.‒Int. Edit., 2025, 64: e202502752
doi: 10.1002/anie.202502752
ZHENG S S, SUN Y, XUE H G, BRAUNSTEIN P, HUANG W, PANG H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022, 9: nwab197
doi: 10.1093/nsr/nwab197
SHIN S J, GITTINS J W, BALHATCHET C J, WALSH A, FORSE A C. Metal-organic framework supercapacitors: Challenges and opportunities[J]. Adv. Funct. Mater., 2024, 34: 2308497
doi: 10.1002/adfm.202308497
CHEN T Q, BIAN S J, YANG X T, LU W J, WANG K B, GUO Y X, ZHANG C, ZHANG Q C. A hollow urchin-like metal-organic framework with Ni-O-cluster SBUs as a promising electrode for an alkaline battery-supercapacitor device[J]. Inorg. Chem. Front., 2023, 10: 2380-2386
doi: 10.1039/D3QI00123G
SHEN W X, GUO X T, PANG H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF[J]. Molecules, 2022, 27: 8226
doi: 10.3390/molecules27238226
ZHENG S S, ZHOU H J, XUE H G, BRAUNSTEIN P, PANG H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage[J]. J. Colloid Interface Sci., 2022, 614: 130-137
doi: 10.1016/j.jcis.2022.01.094
ZHANG X, YANG S X, LU W, LEI D, TIAN Y H, GUO M G, MI P P, QU N, ZHAO Y Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors[J]. J. Colloid Interface Sci., 2021, 592: 95-102
doi: 10.1016/j.jcis.2021.02.042
KHAN J, AHMED A, SALEEM M I, AL-KAHTANI A A. Benzene-1, 4-dicarboxylic acid-based Ni-MOF for efficient battery-supercapacitor hybrids: Electrochemical behavior and mechanistic insights[J]. J. Energy Storage, 2024, 100: 113455
doi: 10.1016/j.est.2024.113455
GITTINS J W, GE K K, BALHATCHET C J, TABERNA P L, SIMON P, FORSE A C. Understanding electrolyte ion size effects on the performance of conducting metal-organic framework supercapacitors[J]. J. Am. Chem. Soc., 2024, 146: 12473-12484
doi: 10.1021/jacs.4c00508
MANIKANDAN M R, CAI K P, HU Y D, LI C L, ZHANG J T, ZHENG Y P, LIANG Y F, SONG H R, SHANG M Y, SHI X N, ZHANG J X, YIN S Q, SHANG S Y, WANG X W. Influence of hydrothermal reaction time on the supercapacitor performance of Ni-MOF nanostructures[J]. Appl. Phys. A‒Mater. Sci. Process., 2021, 127: 421
doi: 10.1007/s00339-021-04564-z
DU P C, DONG Y M, LIU C, WEI W L, LIU D, LIU P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor[J]. J. Colloid Interface Sci., 2018, 518: 57-68
doi: 10.1016/j.jcis.2018.02.010
KALE A M, MANIKANDAN R, RAJ C J, SAVARIRAJ A D, VOZ C, KIM B C. Protonated nickel 2-methylimidazole framework as an advanced electrode material for high-performance hybrid supercapacitor[J]. Mater. Today Energy, 2021, 21: 100736
doi: 10.1016/j.mtener.2021.100736
GU Y J, LIU L M, PANG H, ZHU R M. Conductive mechanisms of metal-organic framework and improvement of its conductivity[J]. Chemistry, 2024, 87: 1361-1367
SUN S Z, WANG Y Y, CHEN L X, CHU M, DONG Y L, LIU D, LIU P, QU D Y, DUAN J X, LI X. MOF(Ni)/CNT composites with layer structure for high capacitive performance[J]. Colloids Surf. A‒ Physicochem. Eng. Asp., 2022, 643: 128802
doi: 10.1016/j.colsurfa.2022.128802
LI J, LI R D, LI T X, MA Y. Advancements in the utilization of nanocarbon sphere composites in supercapacitor[J]. Adv. Compos. Hybrid Mater., 2025, 8: 103
doi: 10.1007/s42114-024-01187-9
SUNDRIYAL S, KAUR H, BHARDWAJ S K, MISHRA S, KIM K H, AKASH D. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications[J]. Coord. Chem. Rev., 2018, 369: 15-38
doi: 10.1016/j.ccr.2018.04.018
SHINDE N M, PUMERA M. MXene-based nanocomposites for supercapacitors: Fundamentals and applications[J]. Small Methods, 2025: 2401751
RAZA N, KUMAR T, SINGH V, KIM K H. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coord. Chem. Rev., 2021, 430: 213660
doi: 10.1016/j.ccr.2020.213660
WANG K B, CHEN C Y, LI Y H, HONG Y, WU H, ZHANG C, ZHANG Q C. Insight into electrochemical performance of nitrogen-doped carbon/NiCo-alloy active nanocomposites[J]. Small, 2023, 19: 2300054
doi: 10.1002/smll.202300054
SUN J, YU X B, ZHAO S H, CHEN H M, TAO K, HAN L. Solvent-controlled morphology of amino-functionalized bimetal metal-organic frameworks for asymmetric supercapacitors[J]. Inorg. Chem., 2020, 59: 11385-11395
doi: 10.1021/acs.inorgchem.0c01157
HE S X, GUO F J, YANG Q, MI H Y, LI J D, YANG N J, QIU J S. Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J]. Small, 2021, 17: 2100353
doi: 10.1002/smll.202100353
YUE T, SHEN B X, GAO P. Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review[J]. Renew. Sustain. Energy Rev., 2022, 158: 12131
MALAVEKAR D, PUJARI S, JANG S, BACHANKAR S, KIM J H. Recent development on transition metal oxides-based core-shell structures for boosted energy density supercapacitors[J]. Small, 2024, 20: 2312179
doi: 10.1002/smll.202312179
MUZAFFAR A, AHAMED M B, HUSSAIN C M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability[J]. Renew. Sustain. Energy Rev., 2024, 195: 114324
doi: 10.1016/j.rser.2024.114324
DUAN H Y, ZHAO Z M, LU J D, HU W H, ZHANG Y, LI S S, ZHANG M F, ZHU R M, PANG H. When conductive MOFs meet MnO2: High electrochemical energy storage performance in an aqueous asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2021, 13: 33083-33090
doi: 10.1021/acsami.1c08161
NIU L, WU T Z, CHEN M, YANG L, YANG J J, WANG Z X, KORNYSHEV A A, JIANG H L, BI S, FENG G. Conductive metal-organic frameworks for supercapacitors[J]. Adv. Mater., 2022, 34: 2200999
doi: 10.1002/adma.202200999
RAN F T, XU X Q, PAN D, LIU Y Y, BAI Y P, SHAO L. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nano-Micro Lett., 2020, 12: 46
doi: 10.1007/s40820-020-0382-x
SHALINI S S, BOSE A C. Solvent-assisted morphology-induced nickel metal-organic framework as a highly efficient electrode for energy storage application[J]. Energy Fuels, 2024, 38: 707-720
doi: 10.1021/acs.energyfuels.3c03713
MELKIYUR I, RATHINAM Y, KUMAR P S, SANKAIYA A, PITCHAIYA S, GANESAN R, VELAUTHAPILLAI D. A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects[J]. Renew. Sustain. Energy Rev., 2023, 173: 113106
doi: 10.1016/j.rser.2022.113106
ZHOU Y, FU Y S, ZHANG T T, HU C Y, QIAO F, WANG J F, NOH H J, BAEK J B. Synthesis of size-controllable, yolk-shell metal sulfide spheres for hybrid supercapacitors[J]. Chem. Eng. J., 2023, 476: 146377
doi: 10.1016/j.cej.2023.146377
LIU Y, XU X M, SHAO Z P, JIANG S P. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Mater., 2020, 26: 1-22
doi: 10.1016/j.ensm.2019.12.019
XU B, ZHANG H B, MEI H, SUN D F. Recent progress in metal-organic framework-based supercapacitor electrode materials[J]. Coord. Chem. Rev., 2020, 420: 213438
doi: 10.1016/j.ccr.2020.213438
JI W J, WANG D, WANG G J, SUN X L, FU Y L. High performance supercapacitors constructed with isomorphic MOFs doped graphene oxide electrode materials[J]. Chinese J. Inorg. Chem., 2021, 37(11): 1931-1942
doi: 10.11862/CJIC.2021.241
WANG L C, FU R Y, OUYANG M J, LI C, CUI Z L, WU H, ZHANG C, WANG K B. Turning plastic trash into energy: Converted MOFs and carbon for energy storage[J]. J. Power Sources, 2025, 645: 237156
doi: 10.1016/j.jpowsour.2025.237156
YANG Y, LI M L, LIN J N, ZOU M Y, GU S T, HONG X J, SI L P, CAI Y P. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorg. Chem., 2020, 59: 2406-2412
doi: 10.1021/acs.inorgchem.9b03263
LI S, LUO J H, WANG J, ZHU Y, FENG J K, FU N, WANG H, GUO Y, TIAN D Y, ZHENG Y, SUN S X, ZHANG C X, CHEN K Y, MU S C, HUANG Y H. Hybrid supercapacitors using metal-organic framework derived nickel-sulfur compounds[J]. J. Colloid Interface Sci., 2024, 669: 265-274
doi: 10.1016/j.jcis.2024.04.205
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Feng Lin , Zhongxin Jin , Caiying Li , Cheng Shao , Yang Xu , Fangze Li , Siqi Liu , Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Huimin Liu , Kezhi Li , Xin Zhang , Xuemin Yin , Qiangang Fu , Hejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jiatong Hu , Qiyi Wang , Ruiwen Tang , Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
Jing Zhang , Su Zhang , Qiqi Li , Linken Ji , Yutong Li , Yukang Ren , Xiaobei Zang , Ning Cao , Han Hu , Peng Liang , Zhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114
(d) Inset: the picture of two devices in series lighting up the LED indicator light; (h) Inset: the picture of the devices in series powered in parallel lighting up the LED indicator light.
(d) Inset: the picture of three devices lighting up light-emitting diodes; (h) Inset: the picture of the device lighting up the indicator light.