Citation: Yijing GU, Huan PANG, Rongmei ZHU. Applications of nickel-based metal-organic framework compounds in supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186 shu

Applications of nickel-based metal-organic framework compounds in supercapacitors

  • Corresponding author: Rongmei ZHU, rmzhu@yzu.edu.cn
  • Received Date: 3 June 2025
    Revised Date: 9 August 2025

Figures(4)

  • Supercapacitors are highly efficient electrochemical energy storage devices, and the electrode material is a key factor affecting their performance. In recent years, metal-organic framework (MOF) materials have become an ideal choice for enhancing the performance of supercapacitors owing to their unique structure and properties. Especially nickel MOF (Ni-MOF) materials, due to their excellent stability and appropriate reaction potential, exhibit great electrochemical energy storage performance. However, they are still faced with some problems in practical applications. It is expected to further enhance their electrochemical performance through material compounding or derivatization. This paper reviews the applications of Ni-MOF and its composites and derivatives in supercapacitors, providing new ideas for developing high-performance energy storage devices.
  • 加载中
    1. [1]

      SANATI S, ABAZARI R, ALBERO J, MORSALI A, GARCÍA H, LIANG Z B, ZOU R Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angew. Chem.‒Int. Edit., 2021, 60: 11048-11067  doi: 10.1002/anie.202010093

    2. [2]

      HONG C N, CROM A B, FELDBLYUM J I, LUKATSKAYA M R. Metal-organic frameworks for fast electrochemical energy storage: Mechanisms and opportunities[J]. Chem, 2023, 9: 798-822  doi: 10.1016/j.chempr.2023.02.016

    3. [3]

      YU J H, HE K, LI M Y, YANG Z G, CHEN Q Q, FAN B B. Research progress of metal-organic framework derivatives in the field of energy storage[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(7): 2680-2692

    4. [4]

      WANG R, GAO J L, VIJAYALAKSHMI M, TANG H, CHEN K, REDDY C V, KAKARLA R R, ANJANA P M, REZAKAZEMI M, CHEOLHO B, SHIM J, AMINABHAVI T M. Metal-organic frameworks and their composites: Design, synthesis, properties, and energy storage applications[J]. Chem. Eng. J., 2024, 496: 154294  doi: 10.1016/j.cej.2024.154294

    5. [5]

      LI S, LIN J D, XIONG W M, GUO X Y, WU D Y, ZHANG Q B, ZHU Q L, ZHANG L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage[J]. Coord. Chem. Rev., 2021, 438: 213872  doi: 10.1016/j.ccr.2021.213872

    6. [6]

      XING X X, LIU J S, ZHU Y, ZHENG D X, GUO X, WU S J, GUO X J, ZHANG H X, LIU S Z. Progress of electrode materials in flexible supercapacitors[J]. Fine Chemicals, 2025, 42(6): 1221-1230

    7. [7]

      ZHAO W W, JIANG M Y, WANG W K, LIU S J, HUANG W, ZHAO Q. Flexible transparent supercapacitors: Materials and devices[J]. Adv. Funct. Mater., 2021, 31: 2009136  doi: 10.1002/adfm.202009136

    8. [8]

      GIRIRAJAN M, BOJARAJAN A K, PULIDINDI I N, HUI K N, SANGARAJU S. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors[J]. Coord. Chem. Rev., 2024, 518: 216080  doi: 10.1016/j.ccr.2024.216080

    9. [9]

      WANG D G, LIANG Z B, GAO S, QU C, ZOU R Q. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coord. Chem. Rev., 2020, 404: 213093  doi: 10.1016/j.ccr.2019.213093

    10. [10]

      SOWBAKKIYAVATHI E S, KUMAR S P A, MAURYA D K, BALAKRISHNAN B, GUO J Z, SUBRAMANIA A. Research progress in the development of transition metal chalcogenides and their composite-based electrode materials for supercapacitors[J]. Adv. Compos. Hybrid Mater., 2024, 7: 130  doi: 10.1007/s42114-024-00913-7

    11. [11]

      ZHANG Y, MEI H X, CAO Y, YAN X H, YAN J, GAO H L, LUO H W, WANG S W, JIA X D, KACHALOVA L, YANG J, XUE S C, ZHOU C G, WANG L X, GUI Y H. Recent advances and challenges of electrode materials for flexible supercapacitors[J]. Coord. Chem. Rev., 2021, 438: 213910  doi: 10.1016/j.ccr.2021.213910

    12. [12]

      HUANG J, XIE Y P, YOU Y, YUAN J L, XU Q Q, XIE H B, CHEN Y W. Rational design of electrode materials for advanced supercapacitors: From lab research to commercialization[J]. Adv. Funct. Mater., 2023, 33: 22130995

    13. [13]

      LIU L M, ZHANG Y, SONG Y Z, GU Y J, PANG H, ZHU R M. Successful in situ growth of conductive MOFs on 2D cobalt-based compounds and their electrochemical performance[J]. Inorg. Chem., 2024, 63: 10324-10334  doi: 10.1021/acs.inorgchem.4c01168

    14. [14]

      SU Y C, ZHANG Y F, FENG W C, ZHANG G X, SUN Y Y, YIN C H, YUAN G Q, TANG Y J, ZHOU W F, CHEN H C, PANG H. Monocarboxylic acid structural analogues facilitate in situ composite of functional complexes for aqueous batteries[J]. Angew. Chem.‒Int. Edit., 2025, 64: e202502752  doi: 10.1002/anie.202502752

    15. [15]

      ZHENG S S, SUN Y, XUE H G, BRAUNSTEIN P, HUANG W, PANG H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance[J]. Natl. Sci. Rev., 2022, 9: nwab197  doi: 10.1093/nsr/nwab197

    16. [16]

      SHIN S J, GITTINS J W, BALHATCHET C J, WALSH A, FORSE A C. Metal-organic framework supercapacitors: Challenges and opportunities[J]. Adv. Funct. Mater., 2024, 34: 2308497  doi: 10.1002/adfm.202308497

    17. [17]

      CHEN T Q, BIAN S J, YANG X T, LU W J, WANG K B, GUO Y X, ZHANG C, ZHANG Q C. A hollow urchin-like metal-organic framework with Ni-O-cluster SBUs as a promising electrode for an alkaline battery-supercapacitor device[J]. Inorg. Chem. Front., 2023, 10: 2380-2386  doi: 10.1039/D3QI00123G

    18. [18]

      SHEN W X, GUO X T, PANG H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF[J]. Molecules, 2022, 27: 8226  doi: 10.3390/molecules27238226

    19. [19]

      ZHENG S S, ZHOU H J, XUE H G, BRAUNSTEIN P, PANG H. Pillared-layer Ni-MOF nanosheets anchored on Ti3C2 MXene for enhanced electrochemical energy storage[J]. J. Colloid Interface Sci., 2022, 614: 130-137  doi: 10.1016/j.jcis.2022.01.094

    20. [20]

      ZHANG X, YANG S X, LU W, LEI D, TIAN Y H, GUO M G, MI P P, QU N, ZHAO Y Y. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors[J]. J. Colloid Interface Sci., 2021, 592: 95-102  doi: 10.1016/j.jcis.2021.02.042

    21. [21]

      KHAN J, AHMED A, SALEEM M I, AL-KAHTANI A A. Benzene-1, 4-dicarboxylic acid-based Ni-MOF for efficient battery-supercapacitor hybrids: Electrochemical behavior and mechanistic insights[J]. J. Energy Storage, 2024, 100: 113455  doi: 10.1016/j.est.2024.113455

    22. [22]

      GITTINS J W, GE K K, BALHATCHET C J, TABERNA P L, SIMON P, FORSE A C. Understanding electrolyte ion size effects on the performance of conducting metal-organic framework supercapacitors[J]. J. Am. Chem. Soc., 2024, 146: 12473-12484  doi: 10.1021/jacs.4c00508

    23. [23]

      MANIKANDAN M R, CAI K P, HU Y D, LI C L, ZHANG J T, ZHENG Y P, LIANG Y F, SONG H R, SHANG M Y, SHI X N, ZHANG J X, YIN S Q, SHANG S Y, WANG X W. Influence of hydrothermal reaction time on the supercapacitor performance of Ni-MOF nanostructures[J]. Appl. Phys. A‒Mater. Sci. Process., 2021, 127: 421  doi: 10.1007/s00339-021-04564-z

    24. [24]

      DU P C, DONG Y M, LIU C, WEI W L, LIU D, LIU P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor[J]. J. Colloid Interface Sci., 2018, 518: 57-68  doi: 10.1016/j.jcis.2018.02.010

    25. [25]

      KALE A M, MANIKANDAN R, RAJ C J, SAVARIRAJ A D, VOZ C, KIM B C. Protonated nickel 2-methylimidazole framework as an advanced electrode material for high-performance hybrid supercapacitor[J]. Mater. Today Energy, 2021, 21: 100736  doi: 10.1016/j.mtener.2021.100736

    26. [26]

      GU Y J, LIU L M, PANG H, ZHU R M. Conductive mechanisms of metal-organic framework and improvement of its conductivity[J]. Chemistry, 2024, 87: 1361-1367

    27. [27]

      SUN S Z, WANG Y Y, CHEN L X, CHU M, DONG Y L, LIU D, LIU P, QU D Y, DUAN J X, LI X. MOF(Ni)/CNT composites with layer structure for high capacitive performance[J]. Colloids Surf. A‒ Physicochem. Eng. Asp., 2022, 643: 128802  doi: 10.1016/j.colsurfa.2022.128802

    28. [28]

      LI J, LI R D, LI T X, MA Y. Advancements in the utilization of nanocarbon sphere composites in supercapacitor[J]. Adv. Compos. Hybrid Mater., 2025, 8: 103  doi: 10.1007/s42114-024-01187-9

    29. [29]

      SUNDRIYAL S, KAUR H, BHARDWAJ S K, MISHRA S, KIM K H, AKASH D. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications[J]. Coord. Chem. Rev., 2018, 369: 15-38  doi: 10.1016/j.ccr.2018.04.018

    30. [30]

      SHINDE N M, PUMERA M. MXene-based nanocomposites for supercapacitors: Fundamentals and applications[J]. Small Methods, 2025: 2401751

    31. [31]

      RAZA N, KUMAR T, SINGH V, KIM K H. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coord. Chem. Rev., 2021, 430: 213660  doi: 10.1016/j.ccr.2020.213660

    32. [32]

      WANG K B, CHEN C Y, LI Y H, HONG Y, WU H, ZHANG C, ZHANG Q C. Insight into electrochemical performance of nitrogen-doped carbon/NiCo-alloy active nanocomposites[J]. Small, 2023, 19: 2300054  doi: 10.1002/smll.202300054

    33. [33]

      SUN J, YU X B, ZHAO S H, CHEN H M, TAO K, HAN L. Solvent-controlled morphology of amino-functionalized bimetal metal-organic frameworks for asymmetric supercapacitors[J]. Inorg. Chem., 2020, 59: 11385-11395  doi: 10.1021/acs.inorgchem.0c01157

    34. [34]

      HE S X, GUO F J, YANG Q, MI H Y, LI J D, YANG N J, QIU J S. Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J]. Small, 2021, 17: 2100353  doi: 10.1002/smll.202100353

    35. [35]

      YUE T, SHEN B X, GAO P. Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review[J]. Renew. Sustain. Energy Rev., 2022, 158: 12131

    36. [36]

      MALAVEKAR D, PUJARI S, JANG S, BACHANKAR S, KIM J H. Recent development on transition metal oxides-based core-shell structures for boosted energy density supercapacitors[J]. Small, 2024, 20: 2312179  doi: 10.1002/smll.202312179

    37. [37]

      MUZAFFAR A, AHAMED M B, HUSSAIN C M. Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability[J]. Renew. Sustain. Energy Rev., 2024, 195: 114324  doi: 10.1016/j.rser.2024.114324

    38. [38]

      DUAN H Y, ZHAO Z M, LU J D, HU W H, ZHANG Y, LI S S, ZHANG M F, ZHU R M, PANG H. When conductive MOFs meet MnO2: High electrochemical energy storage performance in an aqueous asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2021, 13: 33083-33090  doi: 10.1021/acsami.1c08161

    39. [39]

      NIU L, WU T Z, CHEN M, YANG L, YANG J J, WANG Z X, KORNYSHEV A A, JIANG H L, BI S, FENG G. Conductive metal-organic frameworks for supercapacitors[J]. Adv. Mater., 2022, 34: 2200999  doi: 10.1002/adma.202200999

    40. [40]

      RAN F T, XU X Q, PAN D, LIU Y Y, BAI Y P, SHAO L. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nano-Micro Lett., 2020, 12: 46  doi: 10.1007/s40820-020-0382-x

    41. [41]

      SHALINI S S, BOSE A C. Solvent-assisted morphology-induced nickel metal-organic framework as a highly efficient electrode for energy storage application[J]. Energy Fuels, 2024, 38: 707-720  doi: 10.1021/acs.energyfuels.3c03713

    42. [42]

      MELKIYUR I, RATHINAM Y, KUMAR P S, SANKAIYA A, PITCHAIYA S, GANESAN R, VELAUTHAPILLAI D. A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects[J]. Renew. Sustain. Energy Rev., 2023, 173: 113106  doi: 10.1016/j.rser.2022.113106

    43. [43]

      ZHOU Y, FU Y S, ZHANG T T, HU C Y, QIAO F, WANG J F, NOH H J, BAEK J B. Synthesis of size-controllable, yolk-shell metal sulfide spheres for hybrid supercapacitors[J]. Chem. Eng. J., 2023, 476: 146377  doi: 10.1016/j.cej.2023.146377

    44. [44]

      LIU Y, XU X M, SHAO Z P, JIANG S P. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Mater., 2020, 26: 1-22  doi: 10.1016/j.ensm.2019.12.019

    45. [45]

      XU B, ZHANG H B, MEI H, SUN D F. Recent progress in metal-organic framework-based supercapacitor electrode materials[J]. Coord. Chem. Rev., 2020, 420: 213438  doi: 10.1016/j.ccr.2020.213438

    46. [46]

      JI W J, WANG D, WANG G J, SUN X L, FU Y L. High performance supercapacitors constructed with isomorphic MOFs doped graphene oxide electrode materials[J]. Chinese J. Inorg. Chem., 2021, 37(11): 1931-1942  doi: 10.11862/CJIC.2021.241

    47. [47]

      WANG L C, FU R Y, OUYANG M J, LI C, CUI Z L, WU H, ZHANG C, WANG K B. Turning plastic trash into energy: Converted MOFs and carbon for energy storage[J]. J. Power Sources, 2025, 645: 237156  doi: 10.1016/j.jpowsour.2025.237156

    48. [48]

      YANG Y, LI M L, LIN J N, ZOU M Y, GU S T, HONG X J, SI L P, CAI Y P. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorg. Chem., 2020, 59: 2406-2412  doi: 10.1021/acs.inorgchem.9b03263

    49. [49]

      LI S, LUO J H, WANG J, ZHU Y, FENG J K, FU N, WANG H, GUO Y, TIAN D Y, ZHENG Y, SUN S X, ZHANG C X, CHEN K Y, MU S C, HUANG Y H. Hybrid supercapacitors using metal-organic framework derived nickel-sulfur compounds[J]. J. Colloid Interface Sci., 2024, 669: 265-274  doi: 10.1016/j.jcis.2024.04.205

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    17. [17]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    20. [20]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

Metrics
  • PDF Downloads(0)
  • Abstract views(32)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return