Citation: Ruige ZHANG, Zhe ZHANG, He ZHENG, Zhan SHI. Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185 shu

Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction

  • Corresponding author: Zhan SHI, zshi@mail.jlu.edu.cn
  • Received Date: 3 June 2025
    Revised Date: 29 August 2025

Figures(9)

  • The electrocatalytic oxygen evolution reaction (OER), serving as a crucial half-reaction in clean energy technologies such as water splitting and metal-air batteries, plays a significant role in addressing energy crises and solving environmental pollution problems. However, the intricate electron/proton transfer mechanisms and sluggish reaction kinetics of OER result in high overpotentials that significantly limit energy conversion efficiency. The development of highly efficient and stable OER electrocatalysts is therefore urgently required. Metal-organic frameworks (MOFs) have emerged as promising electrocatalysts due to their abundant metal centers, large specific surface areas, and tunable structural configurations. This review systematically summarizes the design strategies for high-performance MOF-based electrocatalysts, while also discussing current challenges and future research directions in this field.
  • 加载中
    1. [1]

      SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NØRSKOV J K, JARAMILLO T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998  doi: 10.1126/science.aad4998

    2. [2]

      ZHANG Z, LIU Y X, QI Y H, YU Z C, CHEN X B, LI C G, SHI Z, FENG S H. "Self-catalysis" acceleration of carrier transport in one-dimensional covalent organic frameworks with mortise-tenon stacking[J]. Angew. Chem.‒Int. Edit., 2025, 64(17): e202501614  doi: 10.1002/anie.202501614

    3. [3]

      WANG W, XU X, ZHOU W, SHAO Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting[J]. Adv. Sci., 2017, 4(4): 1600371  doi: 10.1002/advs.201600371

    4. [4]

      LI Y X, ZHANG Z, YANG Y L, LI C G, SHI Z, FENG S H. Manipulation of electrochemical surface reconstruction on spinel oxides for boosted water oxidation reaction[J]. ACS Catal., 2025, 15(10): 8361-8389  doi: 10.1021/acscatal.5c01964

    5. [5]

      CHAI R L, ZHAO Q, LI J, DONG Z J, SUN Y X, WANG X C, ZHANG P L, WU W T, LI G Y, ZHAO J, LI S H. Superior oxygen evolution electrocatalyst based on Ni-ellagic acid coordination polymer[J]. Adv. Energy Mater., 2024, 14(27): 2400871  doi: 10.1002/aenm.202400871

    6. [6]

      ZHANG Y Q, TAO L, XIE C, WANG D D, ZOU Y Q, CHEN R, WANG Y Y, JIA C K, WANG S Y. Defect engineering on electrode materials for rechargeable batteries[J]. Adv. Mater., 2020, 32(7): 1905923  doi: 10.1002/adma.201905923

    7. [7]

      LI C F, LI D N, LI L B, YANG H Z, ZHANG Y, SU J Z, WANG L, LIU B. CNT-supported RuNi composites enable high round-trip efficiency in regenerative fuel cells[J]. Adv. Mater., 2025, 37(18): 2500416  doi: 10.1002/adma.202500416

    8. [8]

      ZHANG J T, XIA Z H, DAI L M. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Sci. Adv., 2015, 1(7): e1500564  doi: 10.1126/sciadv.1500564

    9. [9]

      ZHANG Z, ZHANG Z Q, XIE M G, TIAN R, CHAI C X, XU R A, CHEN X B, SONG Y J, LU H Y, SHI Z, FENG S H. Enhancing oxygen reduction reaction through asymmetric electronic structure-mediated d-π interaction[J]. CCS Chem., 2025, 7(3): 867-882  doi: 10.31635/ccschem.024.202405248

    10. [10]

      XIONG Y C, WANG Y H, ZHOU J W, LIU F, HAO F K, FAN Z X. Electrochemical nitrate reduction: Ammonia synthesis and the beyond[J]. Adv. Mater., 2024, 36(17): 2304021  doi: 10.1002/adma.202304021

    11. [11]

      CUI X Y, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv. Energy Mater., 2018, 8(22): 1800369  doi: 10.1002/aenm.201800369

    12. [12]

      YOU M Z, DU X, HOU X H, WANG Z Y, ZHOU Y, JI H P, ZHANG L Y, ZHANG Z T, YI S S, CHEN D L. In situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER[J]. Appl. Catal. B‒Environ., 2022, 317: 121729  doi: 10.1016/j.apcatb.2022.121729

    13. [13]

      ZHANG J H, FU X B, KWON S, CHEN K F, LIU X Z, YANG J, SUN H R, WANG Y C, UCHIYAMA T, UCHIMOTO Y, LI S F, LI Y, FAN X L, CHEN G, XIA F J, WU J S, LI Y B, YUE Q, QIAO L, SU D, ZHOU H, GODDARD W A, KANG Y J. Tantalum-stabilized ruthenium oxide electrocatalysts for industrial water electrolysis[J]. Science, 2025, 387(6729): 48-55  doi: 10.1126/science.ado9938

    14. [14]

      SU W X, WANG D H, ZHOU Q, ZHENG X P. Preparation of 3D Fe-Co-Ni-OH/NiCoP electrode as a highly efficient electrocatalyst in the oxygen evolution reactions[J]. J. Alloy. Compd., 2023, 941: 168578  doi: 10.1016/j.jallcom.2022.168578

    15. [15]

      ZHANG Z Q, ZHANG Z, CHEN C L, WANG R, XIE M G, WAN S, ZHANG R G, CONG L C, LU H Y, HAN Y, XING W, SHI Z, FENG S H. Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis[J]. Nat. Commun., 2024, 15: 2556  doi: 10.1038/s41467-024-46872-x

    16. [16]

      LI Y X, ZHANG Z, LI C G, HOU X Y, ZENG J R, CHEN X B, SHI Z, FENG S H. Cation-vacancy-induced reinforced electrochemical surface reconstruction on spinel nickel ferrite for boosting water oxidation[J]. Adv. Funct. Mater., 2024, 35(13): 2417983

    17. [17]

      PENG Y, SANATI S, MORSALI A, GARCÍA H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem.‒Int. Edit., 2023, 62(9): e202214707  doi: 10.1002/anie.202214707

    18. [18]

      ZOU Y H, HUANG Y B, SI D H, YIN Q, WU Q J, WENG Z X, CAO R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion[J]. Angew. Chem.‒Int. Edit., 2021, 60(38): 20915-20920  doi: 10.1002/anie.202107156

    19. [19]

      WANG R, WANG Z Y, ZHANG Y, SHAHEER A R M, LIU T F, CAO R. Bridging atom engineering for low-temperature oxygen activation in a robust metal-organic framework[J]. Angew. Chem.‒Int. Edit., 2024, 63(27): e202400160  doi: 10.1002/anie.202400160

    20. [20]

      CHEN O I, LIU C H, WANG K, BORREGO-MARIN E, LI H, ALAWADHI A H, NAVARRO J A R, YAGHI O M. Water-enhanced direct air capture of carbon dioxide in metal-organic frameworks[J]. J. Am. Chem. Soc., 2024, 146: 2835-2844  doi: 10.1021/jacs.3c14125

    21. [21]

      YOSHINO H, SAIGO M, EHARA T, MIYATA K, ONDA K, PIRILLO J, HIJIKATA Y, TAKAISHI S, KOSAKA W, OTAKE K I, KITAGAWA S, MIYASAKA H. Ultrafast luminescence detection with selective adsorption of carbon disulfide in a gold(Ⅰ) metal-organic framework[J]. Angew. Chem.‒Int. Edit., 2025, 64(5): e202413830  doi: 10.1002/anie.202413830

    22. [22]

      WANG Z Y, HUANG Y C, ZHANG T S, XU K Q, LIU X L, ZHANG A R, XU Y, ZHOU X, DAI J W, JIANG Z N, ZHANG G A, LIU H F, XIA B Y. Unipolar solution flow in calcium-organic frameworks for seawater-evaporation-induced electricity generation[J]. J. Am. Chem. Soc., 2024, 146(2): 1690-1700  doi: 10.1021/jacs.3c13159

    23. [23]

      LI H, EDDAOUDI M, O′KEEFFE M, YAGHI O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279  doi: 10.1038/46248

    24. [24]

      ZHU H L, HUANG J R, LIAO P Q, CHEN X M. Rational design of metal-organic frameworks for electroreduction of CO2 to hydrocarbons and carbon oxygenates[J]. ACS Cent. Sci., 2022, 8(11): 1506-1517  doi: 10.1021/acscentsci.2c01083

    25. [25]

      ZHU B J, XIA D G, ZOU R Q. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts[J]. Coord. Chem. Rev., 2018, 376: 430-448  doi: 10.1016/j.ccr.2018.07.020

    26. [26]

      WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020, 120(2): 1438-1511  doi: 10.1021/acs.chemrev.9b00223

    27. [27]

      ZHENG Y T, LI S M, HUANG N Y, LI X, XU Q. Recent advances in metal-organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction[J]. Coord. Chem. Rev., 2024, 510: 215858  doi: 10.1016/j.ccr.2024.215858

    28. [28]

      BABU K F, KULANDAINATHAN M A, KATSOUNAROS I, RASSAEI L, BURROWS A D, RAITHBY P R, MARKEN F. Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures[J]. Electrochem. Commun., 2010, 12(5): 632-635  doi: 10.1016/j.elecom.2010.02.017

    29. [29]

      YANG D X, CHEN Y F, SU Z, ZHANG X J, ZHANG W L, SRINIVAS K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation[J]. Coord. Chem. Rev., 2021, 428: 213619  doi: 10.1016/j.ccr.2020.213619

    30. [30]

      ZHANG B, ZHENG Y J, MA T, YANG C D, PENG Y F, ZHOU Z H, ZHOU M, LI S, WANG Y H, CHENG C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021, 33(17): 2006042  doi: 10.1002/adma.202006042

    31. [31]

      JADHAV H S, BANDAL H A, RAMAKRISHNA S, KIM H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022, 34(11): 2107072  doi: 10.1002/adma.202107072

    32. [32]

      KHAN U, NAIRAN A, GAO J K, ZHANG Q C. Current progress in 2D metal-organic frameworks for electrocatalysis[J]. Small Struct., 2023, 4(6): 2200109  doi: 10.1002/sstr.202200109

    33. [33]

      LAMIEL C, HUSSAIN I, RABIEE H, OGUNSAKIN O R, ZHANG K L. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems[J]. Coord. Chem. Rev., 2023, 480: 215030  doi: 10.1016/j.ccr.2023.215030

    34. [34]

      YANG S J, LIU X H, LI S S, YUAN W J, YANG L, WANG T, ZHENG H Q, CAO R, ZHANG W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts[J]. Chem. Soc. Rev., 2024, 53(11): 5593-5625  doi: 10.1039/D3CS01031G

    35. [35]

      DAU H, LIMBERG C, REIER T, RISCH M, ROGGAN S, STRASSER P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761  doi: 10.1002/cctc.201000126

    36. [36]

      LIAO P L, KEITH J A, CARTER E A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis[J]. J. Am. Chem. Soc., 2012, 134(32): 13296-13309  doi: 10.1021/ja301567f

    37. [37]

      MAN I C, SU H Y, CALLE-VALLEJO F, HANSEN H A, MARTÍNEZ J I, INOGLU N G, KITCHIN J, JARAMILLO T F, NØRSKOV J K, ROSSMESIL J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165  doi: 10.1002/cctc.201000397

    38. [38]

      QI Q L, ZHANG Y, ZHANG C X, LIU F, LIU R J, HU J. Halogen-modified iron-based metal-organic frameworks for remarkably improved electrocatalytic oxygen evolution[J]. J. Phys. Chem. C, 2024, 128(5): 1936-1945  doi: 10.1021/acs.jpcc.3c06800

    39. [39]

      ZHANG C X, QI Q L, MEI Y J, HU J, SUN M Z, ZHANG Y J, HUANG B L, ZHANG L B, YANG S H. Rationally reconstructed metal-organic frameworks as robust oxygen evolution electrocatalysts[J]. Adv. Mater., 2023, 35(8): 2208904  doi: 10.1002/adma.202208904

    40. [40]

      ZHANG K X, ZOU R Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small, 2021, 17(37): 2100129  doi: 10.1002/smll.202100129

    41. [41]

      DAMJANOVIC A, JOVANOVIC B. Anodic oxide films as barriers to charge transfer in O2 evolution at Pt in acid solutions[J]. J. Electrochem. Soc., 1976, 123: 374-378  doi: 10.1149/1.2132828

    42. [42]

      BINNINGER T, MOHAMED R, WALTAR K, FABBRI E, LEVECQUE P, KÖTZ R, SCHMIDT T J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Sci. Rep., 2015, 5: 12167  doi: 10.1038/srep12167

    43. [43]

      GUAN S Q, XU B E, YU X B, YE Y H, LIU Y T, GUAN T T, YANG Y, GAO J L, LI K X, WANG J L. Activation of lattice oxygen in nitrogen-doped high-entropy oxide nanosheets for highly efficient oxygen evolution reaction[J]. ACS Catal., 2024, 14(23): 17806-17817  doi: 10.1021/acscatal.4c05997

    44. [44]

      WANG X P, XI S B, HUANG P R, DU Y H, ZHONG H Y, WANG Q, BORGNA A, ZHANG Y W, WANG Z B, WANG H, YU Z G, LEE W S V, XUE J M. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution[J]. Nature, 2022, 611: 702-708  doi: 10.1038/s41586-022-05296-7

    45. [45]

      TOMAR A K, PAN U N, KIM N H, LEE J H. Enabling lattice oxygen participation in a triple perovskite oxide electrocatalyst for the oxygen evolution reaction[J]. ACS Energy Lett., 2023, 8(1): 565-573  doi: 10.1021/acsenergylett.2c02617

    46. [46]

      XIN S S, TANG Y, JIA B H, ZHANG Z F, LI C P, BAO R, LI C J, YI J H, WANG J S, MA T Y. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O3 heterostructure for enhanced electrochemical water oxidation[J]. Adv. Funct. Mater., 2023, 33(45): 2305243  doi: 10.1002/adfm.202305243

    47. [47]

      GONG S Y, ZHANG T Y, MENG J, SUN W M, TIAN Y. Advances in the mechanism investigation for the oxygen evolution reaction: Fundamental theory and monitoring techniques[J]. Mater. Chem. Front., 2024, 8(3): 603-626  doi: 10.1039/D3QM00935A

    48. [48]

      RONG C L, HUANG X Y, ARANDIYAN H, SHAO Z P, WANG Y, CHEN Y. Advances in oxygen evolution reaction electrocatalysts via direct oxygen-oxygen radical coupling pathway[J]. Adv. Mater., 2025, 37(9): 2416362  doi: 10.1002/adma.202416362

    49. [49]

      LI Z Y, WANG D, KANG H G, SHI Z N, HU X W, SUN H B, XU J L. Triggering the oxide path mechanism of oxygen evolution reaction: Introducing compressive strain on NiFe-LDH by partial replacement using Ba cations[J]. J. Colloid Interface Sci., 2025, 690: 137329  doi: 10.1016/j.jcis.2025.137329

    50. [50]

      LIU B S, ZHONG H Y, LIU J, YU J C, ZHANG Q, LOH J R, ZHAO L P, ZHANG P, GAO L, XUE J M. Modulation of electrochemical reactions through external stimuli: Applications in oxygen evolution reaction and beyond[J]. ACS Nano, 2025, 19(5): 5110-5130  doi: 10.1021/acsnano.5c00099

    51. [51]

      LIN C, LI J L, LI X P, YANG S, LUO W, ZHANG Y J, KIM S H, KIM D H, SHINDE S S, LI Y F, LIU Z P, JIANG Z, LEE J H. In situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat. Catal., 2021, 4: 1012-1023  doi: 10.1038/s41929-021-00703-0

    52. [52]

      LIU M H, BO S W, ZHANG J, LIU Q H, PAN J, SU H. Tracking the role of compressive strain in bowl-like Co-MOFs structural evolution in water oxidation reaction[J]. Appl. Catal. B‒Environ. Energy, 2024, 354: 124114  doi: 10.1016/j.apcatb.2024.124114

    53. [53]

      SINGH B, YADAVA A, INDRA A. Realizing electrochemical transformation of a metal-organic framework precatalyst into a metal hydroxide-oxy(hydroxide) active catalyst during alkaline water oxidation[J]. J. Mater. Chem. A, 2022, 10(8): 3843-3868  doi: 10.1039/D1TA09424F

    54. [54]

      CHEN S Y, ZHANG S S, GUO L, PAN L, SHI C X, ZHANG X W, HUANG Z F, YANG G D, ZOU J J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation[J]. Nat. Commun., 2023, 14: 4127  doi: 10.1038/s41467-023-39822-6

    55. [55]

      FABBRI E, NACHTEGAAL M, BINNINGER T, CHENG X, KIM B J, DURST J, BOZZA F, GRAULE T, SCHAUBLIN R, WILES L, PERTOSO M, DANILOVIC N, AYERS K E, SCHMIDT T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16: 925-931  doi: 10.1038/nmat4938

    56. [56]

      TANG Y, WU C, ZHANG Q, ZHONG H Y, ZOU A Q, LI J H, MA Y F, AN H, YU Z G, XI S B, XUE J M, WANG X P, WU J G. Accelerated surface reconstruction through regulating the solid-liquid interface by oxyanions in perovskite electrocatalysts for enhanced oxygen evolution[J]. Angew. Chem.‒Int. Edit., 2023, 62(37): e202309107  doi: 10.1002/anie.202309107

    57. [57]

      WU Y Z, ZHAO Y Y, ZHAI P L, WANG C, GAO J F, SUN L C, HOU J G. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation[J]. Adv. Mater., 2022, 34(29): 2202523  doi: 10.1002/adma.202202523

    58. [58]

      YAO Y D, ZHAO G M, GUO X Y, XIONG P, XU Z H, ZHANG L H, CHEN C S, XU C, WU T S, SOO Y L, CUI Z M, LI M M J, ZHU Y. Facet-dependent surface restructuring on nickel (oxy)hydroxides: A self-activation process for enhanced oxygen evolution reaction[J]. J. Am. Chem. Soc., 2024, 146(22): 15219-15229  doi: 10.1021/jacs.4c02292

    59. [59]

      WU Z P, ZUO S W, PEI Z H, ZHANG J, ZHENG L R, LUAN D Y, ZHANG H B, LOU X W D. Operando unveiling the activity origin via preferential structural evolution in Ni-Fe (oxy)phosphides for efficient oxygen evolution[J]. Sci. Adv., 2025, 11(10): eadu5370  doi: 10.1126/sciadv.adu5370

    60. [60]

      ZHANG F, WANG K, ZHANG H, YANG S, XU M, HE Y, LEI L, XIE P, ZHANG X. Dynamic reconstruction of Ce-doped Fe2P/NiCoP hybrid for ampere-level oxygen evolution in anion exchange membrane water electrolysis[J]. Adv. Funct. Mater., 2025: 2500861

    61. [61]

      PENG W F, DESHMUKH A, CHEN N, LV Z X, ZHAO S J, LI J, YAN B M, GAO X, SHANG L, GONG Y T, WU L L, CHEN M Y, ZHANG T R, GOU H Y. Deciphering the dynamic structure evolution of Fe- and Ni-codoped CoS2 for enhanced water oxidation[J]. ACS Catal., 2022, 12(7): 3743-3751  doi: 10.1021/acscatal.2c00328

    62. [62]

      LIU H W, SHI W H, GUO Y Q, MEI Y J, RAO Y, CHEN J L, LIU S J, LIN C, NIE A M, WANG Q, YUAN Y F, XIA B Y, YAO Y G. Supersaturated doping-induced maximized metal-support interaction for highly active and durable oxygen evolution[J]. ACS Nano, 2024, 18(43): 29724-29735  doi: 10.1021/acsnano.4c09249

    63. [63]

      LI S, CHEN B B, WANG Y, YE M Y, VAN AKEN P A, CHENG C, THOMAS A. Oxygen-evolving catalytic atoms on metal carbides[J]. Nat. Mater., 2021, 20: 1240-1247  doi: 10.1038/s41563-021-01006-2

    64. [64]

      YIN Z, HUANG Y, SONG K, LI T, CUI J, MENG C, ZHANG H. Ir single atoms boost metal-oxygen covalency on selenide-derived NiOOH for direct intramolecular oxygen coupling[J]. J. Am. Chem. Soc., 2024, 146(10): 6846-6855  doi: 10.1021/jacs.3c13746

    65. [65]

      ZHENG W, LEE L Y S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst?[J]. ACS Energy Lett., 2021, 6(8): 2838-2843  doi: 10.1021/acsenergylett.1c01350

    66. [66]

      DUAN Y D, LI H, SHI X S, JI C Q, IMBROGNO J, ZHAO D. Stability of metal-organic frameworks in organic media with acids and bases[J]. Ind. Eng. Chem. Res., 2025, 64(10): 5372-5382  doi: 10.1021/acs.iecr.4c04326

    67. [67]

      PEARSON R G. Hard and soft acids and bases[J]. J. Am. Chem. Soc., 1963, 85(22): 3533-3539  doi: 10.1021/ja00905a001

    68. [68]

      LIU Y, WANG S J, LI Z Z, CHU H Q, ZHOU W. Insight into the surface-reconstruction of metal-organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction[J]. Coord. Chem. Rev., 2023, 484: 215117  doi: 10.1016/j.ccr.2023.215117

    69. [69]

      YUAN S, PENG J Y, CAI B, HUANG Z H, GARCIA-ESPARZA A T, SOKARAS D, ZHANG Y R, GIORDANO L, AKKIRAJU K, ZHU Y G, HÜBNER R, ZOU X D, ROMÁN-LESHKOV Y, SHAO-HORN Y. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution[J]. Nat. Mater., 2022, 21: 673-680  doi: 10.1038/s41563-022-01199-0

    70. [70]

      DING J T, FAN T, SHEN K, LI Y W. Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation[J]. Angew. Chem.‒Int. Edit., 2020, 59(31): 13101-13108  doi: 10.1002/anie.202004420

    71. [71]

      TIAN J Y, JIANG F L, YUAN D Q, ZHANG L J, CHEN Q H, HONG M C. Electric-field assisted in situ hydrolysis of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient oxygen evolution[J]. Angew. Chem.‒Int. Edit., 2020, 59(31): 13101-13108  doi: 10.1002/anie.202004420

    72. [72]

      ZHENG D J, GÖRLIN M, MCCORMACK K, KIM J, PENG J Y, XU H B, MA X X, LEBEAU J M, FISCHER R A, ROMÁN-LESHKOV Y, SHAO-HORN Y. Linker-dependent stability of metal-hydroxide organic frameworks for oxygen evolution[J]. Chem. Mater., 2023, 35(13): 5017-5031  doi: 10.1021/acs.chemmater.3c00316

    73. [73]

      ZHANG L, WANG J J, JIANG K, XIAO Z H, GAO Y T, LIN S W, CHEN B. Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction[J]. Angew. Chem.‒Int. Edit., 2022, 61(51): e202214794  doi: 10.1002/anie.202214794

    74. [74]

      LIU D P, YAN Y D, LI H, LIU D D, YANG Y D, LI T Z, DU Y, YAN S C, YU T, ZHOU W, CUI P X, ZOU Z G. A template editing strategy to create interlayer-confined active species for efficient and durable oxygen evolution reaction[J]. Adv. Mater., 2023, 35(2): 2203420  doi: 10.1002/adma.202203420

    75. [75]

      ZHENG W R, LIU M J, LEE L Y S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites[J]. ACS Catal., 2020, 10(1): 81-92  doi: 10.1021/acscatal.9b03790

    76. [76]

      ZHOU J, QIAO F, REN Z C, HOU X B, CHEN Z K, DAI S X, SU G, CAO Z W, JIANG H Q, HUANG M H. Amorphization engineering of bimetallic metal-organic frameworks to identify volcano-type trend toward oxygen evolution reaction[J]. Adv. Funct. Mater., 2024, 34(1): 2304380  doi: 10.1002/adfm.202304380

    77. [77]

      ZHAO S L, TAN C H, HE C T, AN P F, XIE F, JIANG S, ZHU Y F, WU K H, ZHANG B W, LI H J, ZHANG J, CHEN Y, LIU S Q, DONG J C, TANG Z Y. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction[J]. Nat. Energy, 2020, 5: 881-890  doi: 10.1038/s41560-020-00709-1

    78. [78]

      XU Y T, YE Z M, YE J W, CAO L M, HUANG R K, WU J X, ZHOU D D, ZHANG X F, HE C T, ZHANG J P, CHEN X M. Non-3d metal modulation of a cobalt imidazolate framework for excellent electrocatalytic oxygen evolution in neutral media[J]. Angew. Chem.‒Int. Edit., 2019, 58(1): 139-143  doi: 10.1002/anie.201809144

    79. [79]

      YANG J, SHEN Y, XIAN J H, XIANG R N, LI G Q. Rare-earth element doped NiFe-MOFs as efficient and robust bifunctional electrocatalysts for both alkaline freshwater and seawater splitting[J]. Chem. Sci., 2025, 16(2): 685-692  doi: 10.1039/D4SC06574C

    80. [80]

      LI F, TIAN Y H, SU S B, WANG C S, LI D S, CAI D D, ZHANG S Q. Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2021, 299: 120665  doi: 10.1016/j.apcatb.2021.120665

    81. [81]

      LI F L, SHAO Q, HUANG X, LANG J P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angew. Chem.‒Int. Edit., 2018, 57(7): 1888-1892  doi: 10.1002/anie.201711376

    82. [82]

      DISSEGNA S, EPP K, HEINZ W R, KIESLICH G, FISCHER R A. Defective metal-organic frameworks[J]. Adv. Mater., 2018, 30(37): 1704501  doi: 10.1002/adma.201704501

    83. [83]

      ZHOU J, QIU S, HOU X B, NI T J, ZHANG C H, DAI S X, WANG X K, WANG G H, JIANG H Q, HUANG M H. Defect-driven stepwise activation of metal-organic frameworks toward industrial-level anion exchange membrane water electrolysis[J]. Angew. Chem.‒Int. Edit., 2025, 64(29): e202503787  doi: 10.1002/anie.202503787

    84. [84]

      XUE Z Q, LIU K, LIU Q L, LI Y L, LI M R, SU C Y, OGIWARA N, KOBAYASHI H, KITAGAWA H, LIU M, LI G Q. Missing-linker metal-organic frameworks for oxygen evolution reaction[J]. Nat. Commun., 2019, 10: 5048  doi: 10.1038/s41467-019-13051-2

    85. [85]

      DING J T, GUO D Y, WANG N S, WANG H F, YANG X F, SHEN K, CHEN L Y, LI Y W. Defect engineered metal-organic framework with accelerated structural transformation for efficient oxygen evolution reaction[J]. Angew. Chem.‒Int. Edit., 2023, 62(43): e202311909  doi: 10.1002/anie.202311909

    86. [86]

      CHU H Q, LI R J, FENG P P, WANG D Y, LI C X, YU Y L, YANG M. Ligands defect-induced structural self-reconstruction of Fe-Ni-Co-hydroxyl oxides with crystalline/amorphous heterophase from a 2D metal-organic framework for an efficient oxygen evolution reaction[J]. ACS Catal., 2024, 14(3): 1553-1566  doi: 10.1021/acscatal.3c05314

    87. [87]

      LI Y Q, ZHANG Y, WANG Z Y, ZHANG C X, MENG F M, ZHAO J Q, LI X P, HU J. Ultrasonic-assisted preparation of Fe-MOF with rich oxygen vacancies for efficient oxygen evolution[J]. Appl. Catal. A‒Gen., 2024, 683: 119851  doi: 10.1016/j.apcata.2024.119851

    88. [88]

      CHENG W R, ZHAO X, SU H, TANG F M, CHE W, ZHANG H, LIU Q H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis[J]. Nat. Energy, 2019, 4(2): 115-122  doi: 10.1038/s41560-018-0308-8

    89. [89]

      ŁUCZAK J, KROCZEWSKA M, BALUK M, SOWIK J, MAZIERSKI P, ZALESKA-MEDYŃSKA A. Morphology control through the synthesis of metal-organic frameworks[J]. Adv. Colloid Interface Sci., 2023, 314: 102864  doi: 10.1016/j.cis.2023.102864

    90. [90]

      YU D B, SHAO Q, SONG Q J, CUI J W, ZHANG Y L, WU B, GE L, WANG Y, ZHANG Y, QIN Y Q, VAJTAI R, AJAYAN P M, WANG H T, XU T W, WU Y C. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures[J]. Nat. Commun., 2020, 11: 927  doi: 10.1038/s41467-020-14671-9

    91. [91]

      ZHAO S L, WANG Y, DONG J C, HE C T, YIN H J, AN P F, ZHAO K, ZHANG X F, GAO C, ZHANG L J, LV J W, WANG J X, ZHANG J Q, KHATTAK A M, KHAN N A, WEI Z X, ZHANG J, LIU S Q, ZHAO H J, TANG Z Y. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat. Energy, 2016, 1: 16184  doi: 10.1038/nenergy.2016.184

    92. [92]

      LI F L, WANG P, HUANG X, YOUNG D J, WANG H F, BRAUNSTEIN P, LANG J P. Bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation[J]. Angew. Chem.‒Int. Edit., 2019, 58(21): 7051-7056  doi: 10.1002/anie.201902588

    93. [93]

      GE K, SUN S J, ZHAO Y, YANG K, WANG S, ZHANG Z H, CAO J Y, YANG Y F, ZHANG Y, PAN M W, ZHU L. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis[J]. Angew. Chem.‒Int. Edit., 2021, 60(21): 12097-12102  doi: 10.1002/anie.202102632

    94. [94]

      ZOU Y Y, LIU C, ZHANG C Q, YUAN L, LI J X, BAO T, WEI G F, ZOU J, YU C Z. Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays[J]. Nat. Commun., 2023, 14: 5780  doi: 10.1038/s41467-023-41517-x

    95. [95]

      SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem.‒Int. Edit., 2016, 55(11): 3566-3579  doi: 10.1002/anie.201506219

    96. [96]

      TAKAISHI S, HOSODA M, KAJIWARA T, MIYASAKA H, YAMASHITA M, NAKANISHI Y, KITAGAWA Y, YAMAGUCHI K, KOBAYASHI A, KITAGAWA H. Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units[J]. Inorg. Chem., 2009, 48(19): 9048-9050  doi: 10.1021/ic802117q

    97. [97]

      LIU J J, XING G L, CHEN L. 2D conjugated metal-organic frameworks: Defined synthesis and tailor-made functions[J]. Acc. Chem. Res., 2024, 57(7): 1032-1045  doi: 10.1021/acs.accounts.3c00788

    98. [98]

      XING D N, WANG Y Y, ZHOU P, LIU Y Y, WANG Z Y, WANG P, ZHENG Z K, CHENG H F, DAI Y, HUANG B B. Co3(hexaiminotriphenylene)2: A conductive two-dimensional π-d conjugated metal-organic framework for highly efficient oxygen evolution reaction[J]. Appl. Catal. B‒Environ., 2020, 278: 119295  doi: 10.1016/j.apcatb.2020.119295

    99. [99]

      WANG Y T, BAI X W, HUANG J F, LI W Z, ZHANG J H, LI H, LONG Y, PENG Y, XU C L. Tetrahydroxybenzoquinone-based two-dimensional conductive metal-organic framework via π-d conjugation modulation for enhanced oxygen evolution reaction[J]. ACS Catal., 2024, 14(21): 16532-16542  doi: 10.1021/acscatal.4c04977

    100. [100]

      ZHAO Y F, LU X F, WU Z P, PEI Z H, LUAN D Y, LOU X W D. Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution[J]. Adv. Mater., 2023, 35(19): 2207888  doi: 10.1002/adma.202207888

    101. [101]

      CHEN K L, CHOU Y H, LIN T J, CHENG M J, HSIAO P K, PU Y C, CHEN I W P. Real-time monitoring of Fe-induced stable γ-NiOOH in binder-free FeNi MOF electrocatalysts for enhanced oxygen evolution[J]. Small, 2025: e2501142

    102. [102]

      LIU Y W, WANG L R, LIU C C, KRESS J, DECONINCK M, HUBNER R, MIKHAILOVA D, VAYNZOF Y, ZHANG X M, EYCHMULLER A. Electro-bendable metal-organic framework nanosheets enable durable electrocatalytic water oxidation at 1 A/cm2[J]. ACS Catal., 2025, 15: 9353-9363  doi: 10.1021/acscatal.5c02167

    103. [103]

      DUAN J J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting[J]. Nat. Commun., 2017, 8: 15341  doi: 10.1038/ncomms15341

    104. [104]

      HU F, YU D S, ZENG W J, LIN Z Y, HAN S L, SUN Y J, WANG H, REN J W, HUNG S F, LI L L, PENG S J. Active site tailoring of metal-organic frameworks for highly efficient oxygen evolution[J]. Adv. Energy Mater., 2023, 13(29): 2301224  doi: 10.1002/aenm.202301224

    105. [105]

      SONG D Q, GUO H Z, HUANG K, ZHANG H Y, CHEN J, WANG L, LIAN C, WANG Y. Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance[J]. Mater. Today, 2022, 54: 42-51  doi: 10.1016/j.mattod.2022.02.011

    106. [106]

      HONG Q, WANG Y M, WANG R R, CHEN Z L, YANG H Y, YU K, LIU Y, HUANG H, KANG Z H, MENEZES P W. In situ coupling of carbon dots with Co-ZIF nanoarrays enabling highly efficient oxygen evolution electrocatalysis[J]. Small, 2023, 19(31): 2206723  doi: 10.1002/smll.202206723

    107. [107]

      ZHANG Z Q, ZHANG Z, CHEN X B, WANG H B, LU H Y, SHI Z, FENG S H. Metal-organic framework-derived hollow nanocubes as stable noble metal-free electrocatalyst for water splitting at high current density[J]. CCS Chem., 2024, 6(5): 1324-1337  doi: 10.31635/ccschem.023.202303256

    108. [108]

      SUN D R, WONG L W, WONG H Y, LAI K H, YE L, XV X Y, LY T H, DENG Q M, ZHAO J. Direct visualization of atomic structure in multivariate metal-organic frameworks (MOFs) for guiding electrocatalysts design[J]. Angew. Chem.‒Int. Edit., 2023, 62(4): e202216008  doi: 10.1002/anie.202216008

    109. [109]

      LI Y X, ZHANG Z Q, XIE M G, LI C G, SHI Z, FENG S H. A facile templating fabrication of porous CoP nanoparticles towards electrocatalytic oxygen evolution[J]. Appl. Surf. Sci., 2022, 583: 152402  doi: 10.1016/j.apsusc.2021.152402

    110. [110]

      ZHANG Z Q, LI Y D, ZHANG Z, ZHENG H, LIU Y X, YAN Y X, LI C G, LU H Y, SHI Z, FENG S H. An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting[J]. Chem. Sci., 2022, 13(30): 8876-8884  doi: 10.1039/D2SC02845J

    111. [111]

      LI H J W, LIN Y, DUAN J Y, WEN Q L, LIU Y W, ZHAI T Y. Stability of electrocatalytic OER: From principle to application[J]. Chem. Soc. Rev., 2024, 53(21): 10709-10740  doi: 10.1039/D3CS00010A

    112. [112]

      YUE K H, LU R H, GAO M B, SONG F, DAI Y, XIA C F, MEI B B, DONG H L, QI R J, ZHANG D L, ZHANG J W, WANG Z Y, HUANG F Q, XIA B Y, YAN Y. Polyoxometalated metal-organic framework superstructure for stable water oxidation[J]. Science, 2025, 388: 430-436  doi: 10.1126/science.ads1466

    113. [113]

      DING M L, JIANG H L. Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization[J]. CCS Chem., 2021, 3(8): 2740-2748  doi: 10.31635/ccschem.020.202000515

    114. [114]

      WU C, WANG X P, TANG Y, ZHONG H Y, ZHANG X, ZOU A Q, ZHU J L, DIAO C Z, XI S B, XUE J M, WU J G. Origin of surface reconstruction in lattice oxygen oxidation mechanism-based transition metal oxides: A spontaneous chemical process[J]. Angew. Chem.‒Int. Edit., 2023, 62(21): e202218599  doi: 10.1002/anie.202218599

    115. [115]

      HAI G T, TAO Z P, GAO H Y, ZHAO J, JIA D D, HUANG X B, CHEN X, XUE X D, FENG S H, WANG G. Targeted synthesis of covalently linked Ni-MOFs nanosheets/graphene for oxygen evolution reaction by computational screening of anchoring primers[J]. Nano Energy, 2021, 79: 105418  doi: 10.1016/j.nanoen.2020.105418

    116. [116]

      MIAO L C, JIA W Q, CAO X J, JIAO L F. Computational chemistry for water-splitting electrocatalysis[J]. Chem. Soc. Rev., 2024, 53(6): 2771  doi: 10.1039/D2CS01068B

    117. [117]

      CHEN L T, ZHANG X, CHEN A, YAO S, HU X, ZHOU Z. Targeted design of advanced electrocatalysts by machine learning[J]. Chin. J. Catal., 2022, 43(1): 11-32  doi: 10.1016/S1872-2067(21)63852-4

    118. [118]

      ZHANG Z, ZHANG Z Q, CHEN C L, XU R A, CHEN X B, LU H Y, SHI Z, HAN Y, FENG S H. Design and synthesis of electrocatalysts based on catalysis-unit engineering[J]. Adv. Mater., 2024, 36(36): 2403549  doi: 10.1002/adma.202403549

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    3. [3]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    14. [14]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    15. [15]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    16. [16]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    17. [17]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(1)
  • Abstract views(103)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return