Citation: Hongzhe GUO, Sen WANG, Lu YANG, Fucheng LIU, Jiongpeng ZHAO, Zhaoquan YAO. Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179 shu

Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units

  • Corresponding author: Fucheng LIU, fcliu@tjut.edu.cn
  • Received Date: 30 May 2025
    Revised Date: 28 August 2025

Figures(4)

  • To obtain materials capable of efficiently separating acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4), In this work, based on the pore space partition strategy, a pacs-metal-organic framework (MOF): (NH2Me2)2[Fe3(μ3-O)(bdc)3][In(FA)3Cl3] (Fe-FAIn-bdc) was synthesized successfully by using the metal-formate complex [In(FA)3Cl3]3- as the pore partition units, where bdc2-=terephthalate, FA-=formate. Owing to the pore partition effect of this metal-organic building block, fruitful confined spaces are formed in the network of Fe-FAIn-bdc, endowing this MOF with superior separation performance of acetylene and carbon dioxide. According to the adsorption test, this MOF exhibited a high adsorption capacity for C2H2 (50.79 cm3·g-1) at 298 K and 100 kPa, which was much higher than that for CO2 (29.99 cm3·g-1) and C2H4 (30.94 cm3·g-1) under the same conditions. Ideal adsorbed solution theory (IAST) calculations demonstrate that the adsorption selectivity of Fe-FAIn-bdc for the mixture of C2H2/CO2 and C2H2/C2H4 in a volume ratio of 50∶50 was 3.08 and 3.65, respectively, which was higher than some reported MOFs such as NUM-11 and SNNU-18.
  • 加载中
    1. [1]

      FLORIAN M, IVAN D S, NADA H S, TIMOTHY L S, MATHEW S, HARRY G G, STEWART F P, PASCAL M, YANG S H, MARTIN S. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework[J]. Nat. Commun., 2017, 8: 14085  doi: 10.1038/ncomms14085

    2. [2]

      OSAMAH A, LIN R B, WANG H L, LI B, HADI D A, HUT L, CHEN B L. Metal-organic framework with trifluoromethyl groups for selective C2H2 and CO2 adsorption[J]. Cryst. Growth Des., 2018, 18: 4522-4527  doi: 10.1021/acs.cgd.8b00506

    3. [3]

      XIE Y, CUI H, WU H, LIN R B, ZHOU W, CHEN B L. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material[J]. Angew. Chem.‒Int. Edit., 2021, 60: 9604-9609  doi: 10.1002/anie.202100584

    4. [4]

      NIU Z, CUI X L, TONY P, GAURAV V, LAN P C, CHUAN S, XING H B, KATHERINE F, SHANELLE S, BRIAN S, AYMAN N, ABDULLAH A, MA S Q. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation[J]. Angew. Chem.‒Int. Edit., 2021, 60: 5283-5288  doi: 10.1002/anie.202016225

    5. [5]

      LU T T, FAN Y Y, WANG X N, WANG Q, BAO L. A microporous chromium-organic framework fabricated via solvent-assisted metal metathesis for C2H2/CO2 separation[J]. Dalton Trans., 2022, 51: 11658-11664  doi: 10.1039/D2DT01546C

    6. [6]

      WANG K Y, HUANG H C, ZHANG X Y, ZHAO G S, LI F T, GU Y F. Designed metal-organic frameworks with potential for multicomponent hydrocarbon separation[J]. Coord. Chem. Rev., 2023, 484: 215111  doi: 10.1016/j.ccr.2023.215111

    7. [7]

      ZHAO X, WANG Y X, LI D S, BU X H, FENG P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018, 30(37): 1705189  doi: 10.1002/adma.201705189

    8. [8]

      ZHANG Z Q, SHING B P, WANG Y X, KANG C J, FAN W D, ZHAO D. Efficient trapping of trace acetylene from ethylene in an ultramicroporous metal-organic framework: Synergistic effect of high-density open metal and electronegative sites[J]. Angew. Chem.‒Int. Edit., 2020, 59: 18927-18932  doi: 10.1002/anie.202009446

    9. [9]

      XUE Y Y, BAI X Y, ZHANG J, WANG Y, LI S N, JIANG Y C, HU M C, ZHAI G Q. Precise pore space partitions combined with high-density hydrogen-bonding acceptors within metal-organic frameworks for highly efficient acetylene storage and separation[J]. Angew. Chem.‒Int. Edit., 2021, 60: 10122-10128  doi: 10.1002/anie.202015861

    10. [10]

      YANG H J, PENG F, HONG A N, WANG Y X, BU X H, FENG P Y. Ultrastable high-connected chromium metal-organic frameworks[J]. J. Am. Chem. Soc., 2021, 143: 14470-14474  doi: 10.1021/jacs.1c07277

    11. [11]

      ZHAI Q G, BU X H, ZHAO X, LI D S, FENG P Y. Pore space partition in metal-organic frameworks[J]. Accounts Chem. Res., 2017, 50: 407-417  doi: 10.1021/acs.accounts.6b00526

    12. [12]

      ZHAI Q G, BU X H, MAO C Y, ZHAO X, DAEMEN L, CHENG Y Q, RAMIREZ A J, FENG P Y. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials[J]. Nat. Commun., 2016, 7: 13645  doi: 10.1038/ncomms13645

    13. [13]

      XIAO Y C, HONG A N, CHEN Y H. YANG H J, WANG Y X, BU X H, FENG P Y. Developing water-stable pore-partitioned metal-organic frameworks with multi-level symmetry for high-performance sorption applications[J]. Small, 2023, 19: 2205119  doi: 10.1002/smll.202205119

    14. [14]

      ZHAO X, BU X H, NGUYEN E T, ZHAI Q G, MAO C Y, FENG P Y. Multivariable modular design of pore space partition[J]. J. Am. Chem. Soc., 2016, 138: 15102-15105  doi: 10.1021/jacs.6b07901

    15. [15]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8

    16. [16]

      PACIOREK W A, MEYER M, CHAPUIS G. On the geometry of a modern imaging diffractometer[J]. Acta Crystallogr. Sect. A, 1999, A55: 543-557

    17. [17]

      BOURHIS L J, DOLOMANOV O V, GILDEA R J, HOWARD J A K, PUSCHMANN H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected[J]. Acta Crystallogr. Sect. A, 2015, A71: 59-75

    18. [18]

      DEPMEIER W, BÜHRER W. Aluminate sodalites: Sr8[Al12O24](MoO4)2(SAM) at 293, 423, 523, 623 and 723 K and Sr8[Al12O24](WO4)2(SAW) at 293 K[J]. Acta Crystallogr. Sect. B, 1991, B47: 197-206

    19. [19]

      LIU W T, THORP H H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes[J]. Inorg. Chem., 1993, 32: 4102-4105  doi: 10.1021/ic00071a023

    20. [20]

      CUI X L, CHEN K J, XING H B, YANG Q W, RAJAMANI K, BAO Z B, WU H, ZHOU W, DONG X L, HAN Y, LI B, REN Q L, MICHAEL Z, CHEN B L. Effect of pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353: 141-144  doi: 10.1126/science.aaf2458

    21. [21]

      XIAO Y Q, LI S H, JIANG B, LIANG X M, CHU Y Y, DENG F. Effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on metal-organic frameworks with open metal sites[J]. Chem.‒Eur. J. 2024, 30: 20241006

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    3. [3]

      Shanqing YANGLulu WANGQiang ZHANGJiajia LIYilong LITongliang HU . A propane-selective metal-organic framework for inverse selective adsorption propane/propylene separation. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2138-2148. doi: 10.11862/CJIC.20250154

    4. [4]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    5. [5]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    6. [6]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    7. [7]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    8. [8]

      Ruiyan CHENYanping HEJian ZHANG . Synthesis and third-order nonlinear optical property of Ti4L6 cage-based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2149-2156. doi: 10.11862/CJIC.20250177

    9. [9]

      Bangdi GEXiaowei SONGZhiqiang LIANG . A bifunctional three-dimensional Eu-MOF fluorescent probe for highly sensitive detection of 2, 4, 6-trinitrophenol and tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2165-2174. doi: 10.11862/CJIC.20250190

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Yukun CHENKexin FENGBolun ZHANGWentao SONGJianjun ZHANG . Syntheses, crystal structures, and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ) metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1227-1234. doi: 10.11862/CJIC.20240448

    12. [12]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    13. [13]

      Ri PENGYingxiang BAIYuxin XIEDunru ZHUcis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143

    14. [14]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    15. [15]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    19. [19]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    20. [20]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

Metrics
  • PDF Downloads(1)
  • Abstract views(25)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return