Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors
- Corresponding author: Lin′an CAO, caolinan136@163.com Gang XU, gxu@fjirsm.ac.cn
Citation:
Lin′an CAO, Dengyue MA, Gang XU. Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(10): 1953-1972.
doi:
10.11862/CJIC.20250160
LIANG M P, LIU Y J, LU S, WANG Y, GAO C R, FAN K, LIU H Y. Two-dimensional conductive MOFs toward electrochemical sensors for environmental pollutants[J]. Trends Anal. Chem., 2024, 177: 117800
SIMOSKA O, STEVENSON K J. Electrochemical sensors for rapid diagnosis of pathogens in real time[J]. Analyst, 2019, 144(22): 6461-6478
LI T, SHANG D W, GAO S W, WANG B, KONG H, YANG G Z, SHU W D, XU P L, WEI G. Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection[J]. Biosensors, 2022, 12(5): 314
MA T T, LI S M, ZHANG C Y, XU L, BAI Y Y, FU Y L, JI W J, YANG H Y. Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine[J]. Chinese J. Inorg. Chem., 2024, 40(4): 725-735
doi: 10.11862/CJIC.20230351
MO X C, ZHU C H, ZHANG Z R, YAN X H, HAN C S, LI J X, ATTFIELD J P, YANG M H. Nitrogen-doped indium oxide electrochemical sensor for stable and selective NO2 detection[J]. Adv. Mater., 2024, 36(41): 2409294
GUO S J, WANG E K. Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264
HU J C, ZHANG Z G. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids[J]. Nanomaterials, 2020, 10(10): 2020
JOHN A, BENNY L, CHERIAN A R, NARAHARI S Y, VARGHESE A, HEGDE G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review[J]. J. Nanostruct. Chem., 2021, 11(1): 1-31
SHU H, LAI T R, WANG S L, LI M Y, LI H Y, CHEN T, XIAO X C, WANG Y D. The interaction between Fe and Co dual active sites for promoting ultra-sensitive detection of trace paraquat[J]. Chem. Eng. J., 2024, 480: 148180
YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706
YAO M S, CAO L A, TANG Y X, WANG G E, LIU R H, KUMAR P N, WU G D, DENG W H, HONG W J, XU G. Gas transport regulation in a MO/MOF interface for enhanced selective gas detection[J]. J. Mater. Chem. A, 2019, 7(31): 18397-18403
HUANG G, YANG Q H, XU Q, YU S H, JIANG H L. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization[J]. Angew. Chem.‒Int. Edit., 2016, 55(26): 7379-7383
YAO M S, LI W H, XU G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors[J]. Coord. Chem. Rev., 2021, 426: 213479
CHEN T T, WANG F F, CAO S, BAI Y, ZHENG S S, LI W T, ZHANG S T, HU S X, PANG H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Adv. Mater., 2022, 34(30): 2201779
LIU C L, BAI Y, LI W T, YANG F Y, ZHANG G X, PANG H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors[J]. Angew. Chem.‒Int. Edit., 2022, 61(11): e202116282
SU L X, WU H, ZHANG S K, CUI C X, ZHOU S N, PANG H. Insight into intermediate behaviors and design strategies of platinum group metal-based alkaline hydrogen oxidation catalysts[J]. Adv. Mater., 2025, 37(4): 2414628
QIAO Y X, LIU Q, LU S Y, CHEN G, GAO S Y, LU W B, SUN X P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst[J]. J. Mater. Chem. B, 2020, 8(25): 5411-5415
YANG X, YI J Q, WANG T, FENG Y A, WANG J W, YU J, ZHANG F L, JIANG Z, LV Z S, LI H C, HUANG T, SI D H, WANG X S, CAO R, CHEN X D. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat[J]. Adv. Mater., 2022, 34(44): 2201768
NIU K, SUN P C, CHEN J P, LU X B. Dense conductive metal- organic frameworks as robust electrocatalysts for biosensing[J]. Anal. Chem., 2022, 94(49): 17177-17185
CAO L A, LI Y Q, HUO Y F, SUN L, LI X Q, CHEN L, YANG X T, YUAN F L, YAO M S. Volatolomics in fritillarias and their identification by orientation controlled cMOF thin film chemiresistors[J]. Chin. J. Chem., 2024, 43(4): 371-377
XIE L S, SKORUPSKII G, DINCA M. Electrically conductive metal-organic frameworks[J]. Chem. Rev., 2020, 120(16): 8536-8580
YAN X L, CHEN J, SU X, ZHANG J W, WANG C Z, ZHANG H W, LIU Y, WANG L, XU G, CHEN L. Redox synergy: Enhancing gas sensing stability in 2D conjugated metal-organic frameworks via balancing metal node and ligand reactivity[J]. Angew. Chem.‒Int. Edit., 2024, 63(35): e202408189
DONG X F, YANG Y, WANG S, HE X F, WANG Y X, CHENG P. Research progress of conductive metal‑organic frameworks[J]. Chinese J. Inorg. Chem., 2025, 41(1): 14-34
doi: 10.11862/CJIC.20240388
ZHAO H L, TAN X, CHAI H N, HU L, LI H B, QU L J, ZHANG X J, ZHANG G Y. Recent advances in conductive MOF-based electrochemical sensors[J]. Chin. Chem. Lett., 2024, 36(8): 110571
LIU K K, MENG Z, FANG Y, JIANG H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3(6): 100133
FENG S H, XU R R. New materials in hydrothermal synthesis[J]. Accounts Chem. Res., 2001, 34(3): 239-247
ZHOU Y, HU Q, YU F, RAN G Y, WANG H Y, SHEPHERD N D, DALESSANDRO D M, KURMOO M, ZUO J L. A metal-organic framework based on a nickel bis(dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor[J]. J. Am. Chem. Soc., 2020, 142(48): 20313-20317
XU Z H, WANG Q Z, SUI H Z, ZHAO Y Q, WANG L. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage[J]. Food Chem., 2021, 349: 129202
ZHUANG J L, TERFORT A, WOLL C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review[J]. Coord. Chem. Rev., 2016, 307: 391-424
ZACHER R, YUSENKO K, BETARD A, HENKE S, MOLON M, LADNORG T, SHEKHAH O, SCHUPBACH B, ARCOS T D L, KRASOLSKI M, MEILIKHOV M, WINTER J, TERFORT A, WOLL C, FISCHER R A. Liquid-phase epitaxy of multicomponent layer-based porous coordination polymer thin films of [M(L)(P)0.5] type: Importance of deposition sequence on the oriented growth[J]. Chem.‒Eur. J., 2011, 17(5): 1448-1455
YAO M S, LV X J, FU Z H, LI W H, DENG W H, WU G D, XU G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem.‒Int. Edit., 2017, 56(52): 16510-16514
ZHENG R, FU Z H, DENG W H, WEN Y Y, WU A Q, YE X L, XU G. The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy[J]. Angew. Chem.‒Int. Edit., 2022, 61(43): e202212797
CAO L A, YAO M S, JIANG H J, KITAGAWA S, YE X L, LI W H, XU G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection[J]. J. Mater. Chem. A, 2020, 8(18): 9085-9090
ROH H, QUILL T J, CHEN G, GONG H X, CHO Y, KULIK H J, BAO Z N, SALLEO A, GUMYUSENGE A. Copper-based two- dimensional conductive metal organic framework thin films for ultrasensitive detection of perfluoroalkyls in drinking water[J]. ACS Nano, 2025, 19(6): 6332-6341
KEUM C, PARK S, KIM H, KIM H, LEE K H, JEONG Y. Modular conductive MOF-gated field-effect biosensor for sensitive discrimination on the small molecular scale[J]. Chem. Eng. J., 2023, 456: 141079
KO M, MENDECKI L, EAGLETON A M, DURBIN C G, STOLZ R M, MENG Z, MIRICA K A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals[J]. J. Am. Chem. Soc., 2020, 142(27): 11717-11733
MA X H, PANG C H, LI S H, WANG M Y, XIONG Y H, SU L J, LUO J H, XU Z, LIN L Y. Biomimetic synthesis of ultrafine mixed-valence metal-organic framework nanowires and their application in electrochemiluminescence sensing[J]. ACS Appl. Mater. Interfaces, 2021, 13(35): 41987-41996
WANG Y, QIAN Y J, ZHANG L M, ZHANG Z H, CHEN S W, LIU J F, HE X, TIAN Y. Conductive metal-organic framework microelectrodes regulated by conjugated molecular wires for monitoring of dopamine in the mouse Brain[J]. J. Am. Chem. Soc, 2023, 145(4): 2118-2126
DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: Trend and challenges[J]. Chem. Rev., 2018, 118(13): 6189-6235
TSUKAMOTO T, TAKADA K, SAKAMOTO R, MATSUOKA R, TOYODA R, MAEDA H, YAGI T, NISHIKAWA M, SHINJO N, AMANO S, LOKAWA T, LSHIBASHI N, QI T, KANAYAMA K, KINUGAWA R, KODA Y, KOMURAT, NAKAJIMA S, FUKUYAMA R, FUSE N, MIZUI M, MIYASAKI M, YAMASHITA Y, YAMADA K, ZHANG W X, HAN R C, LIU W Y, TSUBOMURA T, NISHIHARA K. Coordination nanosheets based on terpyridine-zinc(Ⅱ) complexes: As photoactive host materials[J]. J. Am. Chem. Soc., 2017, 139(15): 5359-5366
KAMBE T, SAKAMOTO R, HOSHIKO K, TAKADA K, MIYACHI M, RYU J H, SASAKI S, KIM J, NAKAZATO K, TAKATA M, NISHIHARA H. π-Conjugated nickel bis(dithiolene) complex nanosheet[J]. J. Am. Chem. Soc., 2013, 135(7): 2462-2465
LUO Y, WU Y H, BRAUN A, HUANG C, LI X Y, MENON C, CHU P K. Defect engineering to tailor metal vacancies in 2D conductive metal-organic frameworks: An example in electrochemical sensing[J]. ACS Nano, 2022, 16(12): 20820-20830
WU G D, HUANG J H, ZANG Y, HE J, XU G. Porous field-effect transistors based on a semiconductive metal-organic framework[J]. J. Am. Chem. Soc., 2017, 139(4): 1360-1363
YAO M S, XIU J W, HUANG Q Q, LI W H, WU W W, WU A Q, CAO L A, DENG W H, WANG G, XU G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing[J]. Angew. Chem.‒Int. Edit., 2019, 58(42): 14915-14919
CHEN X, DONG J J, CHI K, WANG L J, XIAO F, WANG S, ZHAO Y, LIU Y Q. Electrically conductive metal-organic framework thin film-based on-chip micro-biosensor: A platform to unravel surface morphology-dependent biosensing[J]. Adv. Funct. Mater., 2021, 31(51): 2102855
CAO L A, WEI M, GUO X, WANG D L, CHEN L, GUO J. Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing[J]. Ionics, 2024, 30(4): 2375-2385
LIU J, YANG S Y, SHEN J H, FA H B, HOU C J, YANG M. Conductive metal-organic framework based label-free electrochemical detection of circulating tumor DNA[J]. Microchim. Acta, 2022, 189(10): 391
ADEEL M, ASIF K, RAHMAN M M, DANIELE S, CANZONIERI V, RIZZOLIO F. Glucose detection devices and methods based on metal‑organic frameworks and related materials[J]. Adv. Funct. Mater., 2021, 31(52): 2106023
GALANT A L, KAUFMAN R C, WILSON J D. Glucose: Detection and analysis[J]. Food Chem., 2015, 188: 149-160
QIAO Y X, ZHANG R, HE F Y, HU W L, CAO X W, JIA J F, LU W B, SUN X P. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands[J]. New J. Chem., 2020, 44: 17849-17853
SONG M R, WANG J L, CHEN B Y, WANG L. A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector[J]. Anal. Chem., 2017, 89(21): 11537-11544
AHMAD T, LQBAL A, KHAAKI P, HALIM S A, UDDIN J, KHAN A, DEEB S E, AL-HARRASI A. Recent advances in electrochemical sensing of hydrogen peroxide (H2O2) released from cancer cells[J]. Nanomaterials, 2022, 12(9): 1475
SOHRABI H, MALEKI F, KADHOM M, KUDAIBERGENOV N, KHATAEE A. Electrochemical-based sensing platforms for detection of glucose and H2O2 by porous metal-organic frameworks: A review of status and prospects[J]. Biosensors, 2023, 13(3): 347
ZHANG M D, WANG G, ZHENG B H, LI L Y, LV B N, CAO H, CHEN M D. 3-Layer conductive metal-organic nanosheets as electrocatalysts to enable an ultralow detection limit of H2O2[J]. Nanoscale, 2019, 11(11): 5058-5063
HUANG W, XU Y, WANG Z P, LIAO K, ZHANG Y, SUN Y M. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets integrated with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells[J]. Talanta, 2022, 249: 123612
SU Y, BIAN S M, SAWAN M. Real-time in vivo detection techniques for neurotransmitters: A review[J]. Analyst, 2020, 145(19): 6193-6210
CHOI H K, CHOI J H, YOON J H. An updated review on electrochemical nanobiosensors for neurotransmitter detection[J]. Biosensors, 2023, 13(9): 892
MADHURANTAKAM S, KARNAM J B, BRABAZON D, TAKAI M, AHAD I U, BALAGURU RAYAPPAN J B, KRISHNAN U M. "Nano": An emerging avenue in electrochemical detection of neurotransmitters[J]. ACS Chem. Neurosci., 2020, 11(24): 4024-4047
SARFUDEEN S, P K N, BASITH S A, VARGHESE M, JHARIAT P, CHANDRASEKHAR A, PANDA T. A novel mechano-synthesized zeolitic tetrazolate framework for a high-performance triboelectric nanogenerator and self-powered selective neurochemical detection[J]. ACS Appl. Mater. Interfaces, 2024, 16(19): 24851-24862
WU F, WU X, DUAN Z J, HUANG Y, LOU X T, XIA F. Biomacromolecule-functionalized AIEgens for advanced biomedical studies[J]. Small, 2019, 15(32): e1804839
LI F Q, YANG W Q, ZHAO B R, YANG S, TANG Q Y, CHEN X J, DAI H L, LIU P F. Ultrasensitive DNA-biomacromolecule sensor for the detection application of clinical cancer samples[J]. Adv Sci., 2022, 9(6): 2102804
YANG Y, ZHANG J L, LIANG W B, ZHANG J L, XU X L, ZHANG Y J, YUAN R, XIAO D R. Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform[J]. Sens. Actuator B‒Chem., 2022, 362: 131802
UMAPATHI R, GHOREISHIAN S M, SONWAL S, RANI G M, HUH Y S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables[J]. Coord. Chem. Rev., 2022, 453: 214305
LIANG Z, ABDELSHAFY A M, LUO Z S, BELWAL T, LIN X Y, XU Y Q, WANG L, YANG M Y, QI M, DONG Y Y, LI L. Occurrence, detection, and dissipation of pesticide residue in plant‑ derived foodstuff: A state-of-the-art review[J]. Food Chem., 2022, 384: 132494
ZHAO Q, LI S H, CHAI R L, REN X, ZHANG C. Two-dimensional conductive metal-organic frameworks based on truxene[J]. ACS Appl. Mater. Interfaces, 2020, 12(6): 7504-7509
CAO L A, LI X Q, LI Y Q, HUO Y F, CHEN L. 2D EC-MOF nanowire arrays for highly sensitive electrochemical detection of trace paraquat[J]. Ionics, 2025, 31: 6387-6397
WEN Y T, XU W Q, JIANG W X, YANG W H, LIU M W, WU Y, FANG Q, TANG Y J, LI F, HU L Y, GU W L, ZHU C Z. Photo- enhanced UiO-66/Au nanoparticles with high phosphatase-like activity for rapid degradation and detection of paraoxon[J]. Small, 2025, 589: 2411402
MA X J, QU Q, YUAN J J, YANG J J, XU S X, ZHANG X F. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides[J]. Chem. Eng. J., 2023, 464: 142480
TARAFDAR A, SIROHI R, BALAKUMARAN P A, RESHMY R, MADHAVAN A, SINDHU R, BINOD P, KUMAR Y, KUMAR D, SIM S J. The hazardous threat of bisphenol A: Toxicity, detection and remediation[J]. J. Hazard. Mater., 2022, 423: 127097
ATKARE S, JAGTAP S, LATE D J. Exploring the potential of metal-organic framework based composites as key players in bisphenol detection[J]. Chem. Soc. Rev., 2025, 54: 3736-3774
LEI X L, DENG Z Y, ZENG Y B, HUANG S S, YANG Y W, WANG H L, GUO L H, LI L. A novel composite of conductive metal organic framework and molecularly imprinted poly (ionic liquid) for highly sensitive electrochemical detection of bisphenol A[J]. Sens. Actuator B‒Chem., 2021, 339: 129885
CHEN J Y, HUANG X Z, YE R H, HUANG D H, WANG Y J, CHEN S. Fabrication of a novel electrochemical sensor using conductive MOF Cu-CAT anchored on reduced graphene oxide for BPA detection[J]. J. Appl. Electrochem., 2022, 52(11): 1617-1628
PILLI S, PANDEY A K, PANDEY V, PANDEY K, MUDDAM T, THIRUNAGARI B K, THOTA S T, VARJANI S, TYAGI R D. Detection and removal of poly and perfluoroalkyl polluting substances for sustainable environment[J]. J Environ Manage., 2021, 297: 113336
MENGER R F, FUNK E, HENRY C S, BORCH T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles[J]. Chem. Eng. J., 2021, 417: 129133
WEN X Y, HUANG Q W, NIE D X, ZHAO X Y, CAO H J, WU W H, HAN Z. A multifunctional N-doped Cu-MOFs (N-Cu-MOF) nanomaterial-driven electrochemical apta sensor for sensitive detection of deoxynivalenol[J]. Molecules, 2021, 26(8): 2243
AN X M, JIANG D, CAO Q Y, XU F M, SHIIGI H, WANG W C, CHEN Z D. Highly efficient dual-color luminophores for sensitive and selective detection of diclazepam based on MOF/COF Bi-mesoporous composites[J]. ACS Sens., 2023, 8(7): 2656-2663
DONG S, NIU H W, SUN L W, ZHANG S X, WU D Q, YANG Z, XIANG M. Highly dense Ni-MOF nanoflake arrays supported on conductive graphene/carbon fiber substrate as flexible microelectrode for electrochemical sensing of glucose[J]. J. Electroanal. Chem., 2022, 911: 116219
CHEN Y, TIAN Y, ZHU P, DU L P, CHEN W, WU C S. Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring[J]. Front. Chem., 2020, 8: 602752
ZHU R M, SONG Y Z, HU J L, ZHU K D, LIU L M, JIANG Y X, XIE L R, PANG H. Conductive metal-organic framework grown on the nickel-based hydroxide to realize high-performance electrochemical glucose sensing[J]. Chem.‒Eur. J., 2024, 30(31): e202400982
HU Q, QIN J, WANG X F, RAN G Y, WANG Q, LIU G X, MA J P, GE J Y, WANG H Y. Cu-based conductive MOF grown in situ on Cu foam as a highly selective and stable non-enzymatic glucose sensor[J]. Front. Chem., 2021, 9: 786970
ZHANG T, ZHENG B H, LI L Y, SONG J J, SONG L, ZHANG M D. Fewer-layer conductive metal-organic Langmuir-Blodgett films as electrocatalysts enable an ultralow detection limit of H2O2[J]. Appl. Surf. Sci., 2021, 539: 148255
LUO Y, WU Y H, BRAUN A, HUANG C, LI X Y, MENON C, CHU P K. Defect engineering to tailor metal vacancies in 2D conductive metal-organic frameworks: An example in electrochemical sensing[J]. ACS Nano, 2022, 16(12): 20820-20830
HUANG W, CHEN Y, WU L Y, LONG M, LIN Z F, SU Q Q, ZHENG F L, WU S Y, LI H Y, YU G X. 3D Co-doped Ni-based conductive MOFs modified electrochemical sensor for highly sensitive detection of L-tryptophan[J]. Talanta, 2022, 247: 123596
WANG L C, PAN L Y, HAN Y, HA M N, LI K R, YU H, ZHANG Q H, LI Y G, HOU C Y, WANG H Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF)[J]. J. Colloid Interface Sci., 2022, 616: 326-337
ZHUGE W F, LIU Y X, HUANG W, ZHANG C Z, WEI L Y, PENG J Y. Conductive 2D phthalocyanine-based metal-organic framework as a photoelectrochemical sensor for N-acetyl-L-cysteine detection[J]. Sens. Actuator B‒Chem., 2022, 367: 132028
QIU Z W, YANG T, GAO R, JIE G F, HOU W G. An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine[J]. J. Electroanal. Chem., 2019, 835: 123-129
LIN X Y, SONG D K, SHAO T C, XUE T, HU W Y, JIANG W C, ZOU X Q, LIU N. A multifunctional biosensor via MXene assisted by conductive metal-organic framework for healthcare monitoring[J]. Adv. Funct. Mater., 2023, 34(11): 2311637
ZHANG J L, GAO S Z, YANG Y, LIANG W B, LU M L, ZHANG X Y, XIAO H X, LI Y, YUAN R, XIAO D R. Ruthenium(Ⅱ) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application[J]. Biosens. Bioelectron., 2023, 227: 115157
ZHENG X, LI C, YANG N R, NIU L, GAO F, WANG Q X. Electrochemical sensing of perfluorooctanoic acid via a rationally designed fluorine-functionalized Cu-MOF and in-depth analysis of sensing mechanism[J]. Anal. Chem., 2025, 97(11): 6347-6358
LU S, JIA H X, HUMMEL M, WU Y A, WANG K L, QI X Q, GU Z R. Two-dimensional conductive phthalocyanine-based metal-organic frameworks for electrochemical nitrite sensing[J]. RSC Adv., 2021, 11(8): 4472-4477
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Cheng-an Tao , Jian Huang , Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132
Xiaofang DONG , Yue YANG , Shen WANG , Xiaofang HAO , Yuxia WANG , Peng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Laiying Zhang , Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
Xiaoyong ZHAI , Yao KOU , Pingru SU , Yu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
. Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.
Xiaogang YANG , Xinya ZHANG , Jing LI , Huilin WANG , Min LI , Xiaotian WEI , Xinci WU , Lufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
Wei Li , Jinfan Xu , Yongjun Zhang , Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013