Citation: Yang LU, Liangliang HUANG, Wei ZHAO, Xin WANG, Yanfeng BI. Syntheses, proton conduction, and transport mechanism of two three-dimensional lanthanum phosphite-oxalates[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(10): 2127-2137. doi: 10.11862/CJIC.20250149 shu

Syntheses, proton conduction, and transport mechanism of two three-dimensional lanthanum phosphite-oxalates

Figures(6)

  • To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis, two new lanthanum phosphite-oxalates with 3D frameworks, designated as [La(HPO3)(C2O4)0.5(H2O)2] (La-1) and (C6H16N2)(H3O)[La2(H2PO3)3(C2O4)3(H2O)] (La-2) (C6H14N2=cis-, 6-dimethylpiperazine), were prepared by hydrothermal and solvothermal conduction, respectively. La-1 was constructed with lanthanum phosphite 2D layers and C2O42- groups, whereas La-2 was constructed with lanthanum oxalate 2D layers and H2PO3- groups. Alternating current (AC) impedance spectra indicate that the proton conductivities of both compounds could reach 10-4 S•cm-1 and remain highly durable at 75 ℃ and 98% of relative humidity (RH). Due to the abundance of H-bonds in La-2, the σ of La-2 was higher than that of La-1. La-1 exhibited excellent water and pH stability.
  • 加载中
    1. [1]

      SI F Z, LIU S B, LIANG Y, FU X Z, ZHANG J J, LUO J L. Fuel cell reactors for the clean cogeneration of electrical energy and value-added chemicals[J]. Electrochem. Energy Rev., 2022,5(S2)25. doi: 10.1007/s41918-022-00168-0

    2. [2]

      QU E L, HAO X F, XIAO M, HAN D M, HUANG S, HUANG Z H, WANG S J, MENG Y Z. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives[J]. J. Power Sources, 2022,533231386. doi: 10.1016/j.jpowsour.2022.231386

    3. [3]

      BIYIKOGLU A. Review of proton exchange membrane fuel cell models[J]. Int. J. Hydrog. Energy, 2005,30(11):1181-1212. doi: 10.1016/j.ijhydene.2005.05.010

    4. [4]

      ZHANG B, CAO Y, LI Z, WU H, YIN Y H, CAO L, HE X Y, JIANG Z Y. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochim. Acta, 2017,240:186-194. doi: 10.1016/j.electacta.2017.04.087

    5. [5]

      LI C J, LI R Y, CHU Z T, LIU H T, LU J, WANG S N, LI Y W.. Synthesis, structure and proton conduction of a crystalline Ni(Ⅱ)-MOF with continuous hydrogen bonds[J]. Chinese J. Inorg. Chem., 2021,37(4):645-652.

    6. [6]

      YE Y X, GONG L S, XIANG S C, ZHANG Z J, CHEN B L. Metal- organic frameworks as a versatile platform for proton conductors[J]. Adv. Mater., 2020,32(21)1907090. doi: 10.1002/adma.201907090

    7. [7]

      WU H, YANG F, LV X L, WANG B, ZHANG Y Z, ZHAO M J, LI J R. A stable porphyrinic metal-organic framework pore-functionalized by high-density carboxylic groups for proton conduction[J]. J. Mater. Chem. A, 2017,5:14525-14529. doi: 10.1039/C7TA03917D

    8. [8]

      XING X S, ZHOU Z Y, GAO Q Y, WANG M R, ZHANG J C, ZHANG R C, GUO Y, DU J M. Photomodulation of proton conductivity by nitro-nitroso transformation in a metal-organic framework[J]. Inorg. Chem., 2023,62:18809-18813. doi: 10.1021/acs.inorgchem.3c03092

    9. [9]

      ZHU S D, DONG L, HUA J J, WEN H R, LU Y B, DENG W H, LIU C M, LIU S J, XU G, FU Z H. A proton conductor showing an indication of single-ion magnet based on a mononuclear Dy(Ⅲ) complex[J]. J. Mater. Chem. C, 2021,9:481-488. doi: 10.1039/D0TC04423G

    10. [10]

      ZHANG W W, WANG Y L, LIU Q Y, LIU Q Y. Lanthanide-benzophenone-3, 3'-disulfonyl-4, 4'-dicarboxylate frameworks: Temperature and 1-hydroxypyren luminescence sensing and proton conduction[J]. Inorg. Chem., 2018,57:7805-7814. doi: 10.1021/acs.inorgchem.8b00865

    11. [11]

      CHEN F G, XU W, CHEN J, XIAO H P, WANG H Y, CHEN Z Y, GE J Y. Dysprosium(Ⅲ) metal-organic framework demonstrating ratiometric luminescent detection of pH, magnetism, and proton conduction[J]. Inorg. Chem., 2022,61:5388-5396. doi: 10.1021/acs.inorgchem.2c00242

    12. [12]

      NIU X G, YU Y H, MU C Y, XIE X X, LIU Y, LIU Z Y, LI L K, LI G, LI J P. High proton conduction in two highly water-stable lanthanide coordination polymers from a triazole multicarboxylate ligand[J]. Inorg. Chem., 2021,60:13242-13251. doi: 10.1021/acs.inorgchem.1c01616

    13. [13]

      YANG S L, SUN P P, YUAN Y Y, ZHANG C X, WANG Q L. High proton conduction behavior in 12-connected 3D porous lanthanide-organic frameworks and their polymer composites[J]. CrystEngComm, 2018,20:3066-3073. doi: 10.1039/C8CE00476E

    14. [14]

      DONG X Y, WANG R, WANG J Z, ZANG S Q, MAK T C W. Highly selective sensing Fe3+ and proton conduction in a water-stable sulfonate-carboxylate Tb-organic-framework[J]. J. Mater. Chem. A, 2015,3:641-647. doi: 10.1039/C4TA04421E

    15. [15]

      ZANG Q, WEI W J, LI Q, PAN J, HAN S D, HU J X, WANG G M. Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex[J]. Sci. China Chem., 2021,64(7):1170-1176. doi: 10.1007/s11426-021-9976-7

    16. [16]

      WANG M M, XIONG T Z, CHEN B C, HU J J, WEN H R, LIU S J. Solvent- and pH-stable Eu(Ⅲ)-based metal-organic framework with phosphate-ratio fluorescence sensing and significant proton conduction[J]. Inorg. Chem., 2023,62:21322-21328. doi: 10.1021/acs.inorgchem.3c03406

    17. [17]

      XING X S, FU Z H, ZHANG N N, YU X Q, WANG M S, GUO G C. High proton conduction in an excellent water-stable gadolinium metal-organic framework[J]. Chem. Commun., 2019,55:1241-1244. doi: 10.1039/C8CC08700H

    18. [18]

      WANG X, QIN T, BAO S S, ZHANG Y C, SHEN X, ZHENG L M, ZHU D R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and sensitive luminescence sensor for Cu2+ ions[J]. J. Mater. Chem. A, 2016,4:16484-16489. doi: 10.1039/C6TA06792A

    19. [19]

      YAMADA T, SADAKIYO M, KITAGAWA H. High proton conductivity of one-dimensional ferrous oxalate dihydrate[J]. J. Am. Chem. Soc., 2009,131:3144-3145. doi: 10.1021/ja808681m

    20. [20]

      SADAKIYO M, YAMADA T, KITAGAWA H. Rational designs for highly proton-conductive metal-organic frameworks[J]. J. Am. Chem. Soc., 2009,131:9906-9907. doi: 10.1021/ja9040016

    21. [21]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    22. [22]

      LI H L, HUANG L L, LU Y, ZHAO S S, SHAO X, BI Y F. A 3D open-framework amino acid templated cerium phosphite-oxalate showing proton conductive property[J]. Solid State Sci., 2024,157107692. doi: 10.1016/j.solidstatesciences.2024.107692

    23. [23]

      ZHAO S S, HUANG L L, LU Y, SHAO X, YUAN Y, BI Y F. [Ce2(H2PO3)(C2O4)4](C6N2H16)·H3O·3H2O: A lanthanide phosphite-oxalate compound with high proton conductivity[J]. J. Solid State Chem., 2024,340124989. doi: 10.1016/j.jssc.2024.124989

    24. [24]

      SHAO X, HUANG L L, ZHAO S S, LU Y, YUAN Y, BI Y F. A 3D magnesium phosphite-oxalate exhibiting high proton conductivity at low humidity[J]. Inorg. Chem. Commun., 2024,167112696. doi: 10.1016/j.inoche.2024.112696

    25. [25]

      GUO K M, ZHAO L L, YU S H, ZHOU W Y, LI Z F, LI G. A water-stable proton-conductive barium(Ⅱ)-organic framework for ammonia sensing at high humidity[J]. Inorg. Chem., 2018,57:7104-7112. doi: 10.1021/acs.inorgchem.8b00806

    26. [26]

      GAO F, HUANG L L, XIU Z J, YIN Y Z, MA Y K, BI Y F, ZHENG Z P. Solvent-free synthesis and room temperature proton conductivity of new cobalt phosphite-oxalates[J]. CrystEngComm, 2018,20:5544-5550. doi: 10.1039/C8CE01198B

    27. [27]

      JIA C, LIANG S, WEN Y X, XUE Z Z, PAN J, HU J X, WANG G M. Photochromic Ln-phosphonates assembled by an imidazole derivative: Construction, crystal structures, and light-enhanced proton conductivity[J]. Cryst. Growth Des., 2024,24:2202-2209. doi: 10.1021/acs.cgd.3c01515

    28. [28]

      ZHUANG Q, KANG L L, ZHANG B Y, LI Z F, LI G. Remarkable water-mediated proton conductivity of two porous zirconium(Ⅳ)/ hafnium(Ⅳ) metal-organic frameworks bearing porphyrinlcarboxylate ligands[J]. J. Colloid Interface Sci., 2024,657:482-490. doi: 10.1016/j.jcis.2023.12.026

    29. [29]

      MA X, WANG S Y, FAN Q H, WANG P, WANG L, LUO Y J, DU L, ZHAO Q H. A highly stable multifunctional bi-based MOF for rapid visual detection of S2- and H2S gas with high proton conductivity[J]. ACS Appl. Mater. Interfaces, 2024,16:33865-33876. doi: 10.1021/acsami.4c07878

    30. [30]

      LV Y C, LIANG J S, LI D L, XIONG Z L, CAI K C, XIANG S C, ZHANG Z J. Hydration-facilitated coordination tuning of metal- organic frameworks toward water-responsive fluorescence and proton conduction[J]. Inorg. Chem., 2022,61(46):18789-18794. doi: 10.1021/acs.inorgchem.2c03341

    31. [31]

      YANG Y F, HUANG L L, LI B, ZHAO S S, ZHANG F J, BI Y F. Synthesis and proton conductivity study of vanadium phosphate-phosphite oxalate with excellent water and acid-base stability[J]. Inorg. Chem. Commun., 2022,141109545. doi: 10.1016/j.inoche.2022.109545

    32. [32]

      BISWAS S, CHAKRABORTY J, PARMAR V S, BERA S P, GANGULI N, KONAR S. Channel-assisted proton conduction behavior in hydroxyl-rich lanthanide-based magnetic metal-organic frameworks[J]. Inorg. Chem., 2017,56:4956-4965. doi: 10.1021/acs.inorgchem.6b03147

    33. [33]

      CHEN W Y, ZHAO L J, YU S H, LI Z F, FENG J Y, LI G. Two water-stable 3D supramolecules supported by hydrogen bonds for proton conduction[J]. Polyhedron, 2018,148:100-108. doi: 10.1016/j.poly.2018.04.003

    34. [34]

      YU C X, WU H, SHAO Z C, GAO M J, SUN X Q, LIU L L. Enhanced proton conduction in metal-organic frameworks through single-crystal to single-crystal transformation[J]. Inorg. Chem., 2025,64:3908-3916. doi: 10.1021/acs.inorgchem.4c05169

    35. [35]

      LIU R L, JING LI, ZHAO Y L, WANG Y R, FAN X H, LI G, WANG D Y. Two-in-one: Proton-conductive and luminescence properties of one strontium(Ⅱ)-organic framework bearing imidazole dicarboxylate[J]. J. Solid State Chem., 2024,332124557. doi: 10.1016/j.jssc.2024.124557

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    2. [2]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    3. [3]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    4. [4]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    5. [5]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    6. [6]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    7. [7]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    8. [8]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    9. [9]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    10. [10]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    11. [11]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    12. [12]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    15. [15]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    16. [16]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    17. [17]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    18. [18]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    19. [19]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    20. [20]

      Zhe LiHaozhi LeiZhiqiang RenCheng WangQian XiaWeihong Tan . Enhancing the stability of 68Ga-labeled RNA aptamers for pancreatic β-cell and insulinoma imaging through nucleoside modifications. Chinese Chemical Letters, 2025, 36(10): 110804-. doi: 10.1016/j.cclet.2024.110804

Metrics
  • PDF Downloads(0)
  • Abstract views(24)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return