Ligand substitution of diiron hexacarbonyl complex with aminodiphosphine to prepare diiron aminophosphine complexes relevant to [FeFe]-hydrogenases
- Corresponding author: Peihua ZHAO, zph2004@nuc.edu.cn
Citation:
Xufeng LIU, Shaojie WANG, Peihua ZHAO. Ligand substitution of diiron hexacarbonyl complex with aminodiphosphine to prepare diiron aminophosphine complexes relevant to [FeFe]-hydrogenases[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(9): 1851-1858.
doi:
10.11862/CJIC.20250131
LOH J Y, FOO, J J, YAP F M, LIANG H F, ONG W J. Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting[J]. Chin. J. Catal., 2024, 58: 37-85
doi: 10.1016/S1872-2067(23)64581-4
WANG S J, BAI X, SU X, WANG T F, HE Y B, ZHAO P H. Molecular engineering of carbon nanotubes with diiron dithiolato compounds for electrocatalytic overall water splitting[J]. Electrochim. Acta, 2025, 524: 145986
doi: 10.1016/j.electacta.2025.145986
JADHAV H S, BANDAL H A, RAMAKRISHNA S, KIM H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting[J]. Adv. Mater., 2022, 34(11): 2107072
doi: 10.1002/adma.202107072
ZHAO P H, LI J R, MA Z Y, HAN H F, QU Y P, LU B P. Diiron azadithiolate clusters supported on carbon nanotubes for efficient electrocatalytic proton reduction[J]. Inorg. Chem. Front., 2021, 8(8): 2107-2118
doi: 10.1039/D0QI01415J
LUBITZ W, OGATA H, RÜDIGER O, REIJERSE E. Hydrogenases[J]. Chem. Rev., 2014, 114(8): 4081-4148
doi: 10.1021/cr4005814
KLEINHAUS J T, WITTKAMP F, YADAV S, SIEGMUND D, APFEL U P. [FeFe]-Hydrogenases: Maturation and reactivity of enzymatic systems and overview of biomimetic models[J]. Chem. Soc. Rev., 2021, 50(3): 1688-1784
PETERS J W, LANZILOTTA W N, LEMON B J, SEEFELDT L C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998, 282(5395): 1853-1858
doi: 10.1126/science.282.5395.1853
NICOLET Y, PIRAS C, LEGRAND P, HATCHIKIAN E C, FONTECILLA-CAMPS J C. Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center[J]. Structure, 1999, 7(1): 13-23
doi: 10.1016/S0969-2126(99)80005-7
LYON E J, GEORGAKAKI I P, REIBENSPIES J H, DARENSBOURG M Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase[J]. Angew. Chem. ‒Int. Edit., 1999, 38(21): 3178-3180
doi: 10.1002/(SICI)1521-3773(19991102)38:21<3178::AID-ANIE3178>3.0.CO;2-4
JIANG X J, LONG L, WANG H L, CHEN L M, LIU X M. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage[J]. Dalton Trans., 2014, 43(26): 9968-9975
doi: 10.1039/C3DT53620C
SCHILTER D, CAMARA J M, HUYNH M T, HAMMES-SCHIFFER S, RAUCHFUSS T B. Hydrogenase enzymes and their synthetic models: The role of metal hydrides[J]. Chem. Rev., 2016, 116(15): 8693-8749
doi: 10.1021/acs.chemrev.6b00180
GAO S, LIU Y, SHAO Y D, JIANG D Y, DUAN Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases[J]. Coord. Chem. Rev., 2020, 402: 213081
doi: 10.1016/j.ccr.2019.213081
SHOTONWA I O, EJEROMEDOGHENE O, ADESOJI A O, ALLI Y A, AKINREMI C, ADEWUYI S. Electrochemistry, electrocatalysis, and mechanistic details into hydrogen evolution pathways of hexacoordinated iron scaffolds in hydrogenase mimics[J]. Coord. Chem. Rev., 2023, 938: 117446
HOGARTH G. An unexpected leading role for [Fe2(CO)6(μ-pdt)] in our understanding of [FeFe]-H2ases and the search for clean hydrogen production[J]. Coord. Chem. Rev., 2023, 490: 215174
doi: 10.1016/j.ccr.2023.215174
HE J, DENG C L, LI Y, LI Y L, WU Y, ZOU L K, MU C, LUO Q, XIE B, WEI J, HU J W, ZHAO P H, ZHENG W. A new route to the synthesis of phosphine-substituted diiron aza and oxadithiolate complexes[J]. Organometallics, 2017, 36(7): 1322-1330
doi: 10.1021/acs.organomet.7b00040
GAO X P, LI S X, HU K, DENG C L, BAI S F, WANG Y L, XIE H T, LÜ S, LI Y L, LI Q L. Diiron azadithiolate models with bulky bridgehead moiety: Synthesis, structure and electrochemistry[J]. J. Mol. Struct., 2024, 1306: 137881
BAI S F, MA J W, GUO Y N, DU X M, WANG Y L, LI Q L, LÜ, S. Aminophosphine-substituted Fe/E (E=S, Se) carbonyls related to [FeFe]-hydrogenases: Synthesis, protonation, and electrocatalytic proton reduction[J]. J. Mol. Struct., 2023, 1283: 135287
GAO X P, BAI S F, WANG Y L, LÜ S, LI Q L. Facile access to tetra-substituted FeⅡFeⅡ biomimetics for the oxidized state active site of [FeFe]-hydrogenases[J]. Inorg. Chem. Front., 2024, 11(9): 2672-2680
doi: 10.1039/D4QI00773E
ZHU L J, LIU X F. Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands[J]. Chinese J. Inorg. Chem., 2025, 41(2): 321-328
ZHU L J, LIU X F. Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine[J]. Chinese J. Inorg. Chem., 2025, 41(5): 939-947
RAUCHFUSS T B. Diiron azadithiolates as models for the [FeFe]- hydrogenase active site and paradigm for the role of the second coordination sphere[J]. Accounts Chem. Res., 2015, 48(7): 2107-2116
doi: 10.1021/acs.accounts.5b00177
ZHAO P H, MA Z Y, HU M Y, HE J, WANG Y Z, JING X B, CHEN H Y, LI Y L. PNP-chelated and -bridged diiron dithiolate complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} together with related monophosphine complexes for the [2Fe]H subsite of [FeFe]-hydrogenases: Preparation, structure, and electrocatalysis[J]. Organometallics, 2018, 37(8): 1280-1287
doi: 10.1021/acs.organomet.8b00030
ZHAO P H, HU M Y, LI J R, MA Z Y, WANG Y Z, HE J, LI Y L, LIU X F. Influence of dithiolate bridges on the structures and electrocatalytic performance of small bite-angle PNP-chelated diiron complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} related to [FeFe]-hydrogenases[J]. Organometallics, 2019, 38(2): 385-394
doi: 10.1021/acs.organomet.8b00759
HU M Y, ZHAO P H, LI J R, GU X L, JING X B, LIU X F. Synthesis, structures, and electrocatalytic properties of phosphine-monodentate, -chelate, and -bridge diiron 2, 2-dimethylpropanedithiolate complexes related to [FeFe]-hydrogenases[J]. Appl. Organomet. Chem., 2020, 34(4): e5523
doi: 10.1002/aoc.5523
ZHAO P H, LI J R, GU X L, JING X B, LIU X F. Diiron and trinuclear NiFe2 dithiolate compounds chelating by PCNCP ligands: Synthetic models of [FeFe]- and [NiFe]-hydrogenases[J]. J. Inorg. Biochem., 2020, 210: 111126
doi: 10.1016/j.jinorgbio.2020.111126
GU X L, LI J R, JIN B, GUO Y, JING X B. Zhao P H. Phosphine-substituted diiron complexes Fe2(μ-Rodt)(CO)6-n(PPh3)n (R=Ph, Me, H and n=1, 2) featuring desymmetrized oxadithiolate bridges: Structures, protonation, and electrocatalysis[J]. New J. Chem., 2021, 45(38): 17996-18007
doi: 10.1039/D1NJ03398K
ZHAO P H, GU X L, TAN X, JIN B, GUO Y. Bulky oxadithiolate-bridged [FeFe]-hydrogenase mimics [Fe2(μ-R2odt)(CO)4(κ2-diphosphine)] (R=Ph and H) with chelating diphosphines[J]. J. Inorg. Biochem., 2022, 235: 111933
doi: 10.1016/j.jinorgbio.2022.111933
ZHAO P H, GAO Y, SUN Y L, JING X B, ZHOU D Y. Biomimics of [FeFe]-hydrogenases: Diiron aza- versus oxadiphenylpropanedithiolate complexes with mono-versus diphosphines[J]. J. Inorg. Biochem., 2025, 267: 112859
doi: 10.1016/j.jinorgbio.2025.112859
SINGLETON M L, JENKINS R M, KLEMASHEVICH C L, DARENSBOURG M Y. The effect of bridgehead steric bulk on the ground state and intramolecular exchange processes of (μ-SCH2CR2CH2S)[Fe(CO)3][Fe(CO)2L] complexes[J]. C. R. Chim., 2008, 11: 861-874
doi: 10.1016/j.crci.2008.01.018
SHELDRICK G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64: 112-122
SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8
GLOAGUEN F, LAWRENCE J D, SCHMIDT M, WILSON S R, RAUCHFUSS T B. Synthetic and structural studies on [Fe2(SR)2 (CN)x(CO)6-x]x- as active site models for Fe-only hydrogenases[J]. J. Am. Chem. Soc., 2001, 123(50): 12518-12527
doi: 10.1021/ja016071v
CHEN F Y, HU M Y, GU X L, LIU X F, ZHAO P H. ADT-type [FeFe]-hydrogenase biomimics featuring monodentate phosphines: Formation, structures, and electrocatalysis[J]. Transit. Met. Chem., 2021, 46(8): 645-653
doi: 10.1007/s11243-021-00482-4
HU M Y, LI J R, JING X B, TIAN H, ZHAO P H. Influence of pendant amines in phosphine ligands on the formation, structures, and electrochemical properties of diiron aminophosphine complexes related to [FeFe]-hydrogenases[J]. Inorg. Chim. Acta, 2019, 495: 119021
doi: 10.1016/j.ica.2019.119021
WANG Z, JIANG W F, LIU J H, JIANG W N, WANG Y, ÅKERMARK B, SUN L C. Pendant bases as proton transfer relays in diiron dithiolate complexes inspired by [Fe-Fe] hydrogenase active site[J]. J. Organomet. Chem., 2008, 693(17): 2828-2834
doi: 10.1016/j.jorganchem.2008.06.001
LI Y L, MA Z Y, HE J, HU M Y, ZHAO P H. Aminophosphine- substituted diiron dithiolate complexes: Synthesis, crystal structure, and electrocatalytic investigation[J]. J. Organomet. Chem., 2017, 851: 14-21
doi: 10.1016/j.jorganchem.2017.09.014
LI P, WANG M, HE C J, LI G H, LIU X Y, CHEN C N, ÅKERMARK B, SUN L C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: Crystal structures of [(μ-S2C3H6)Fe2(CO)6-nLn] (L=PMe2Ph, n=1, 2; PPh3, P(OEt)3, n=1)[J]. Eur. J. Inorg. Chem., 2005(12): 2506-2513
MEJIA-RODRIGUEZ R, CHONG D, REIBENSPIES J H, SORIAGA M P, DARENSBOURG M Y. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: Iron hydrogenase model complexes[J]. J. Am. Chem. Soc., 2004, 126(38): 12004-12014
doi: 10.1021/ja039394v
GHOSH S, RAHAMAN A, ORTON G, GREGORI G, BERNATM, KULSUME U, HOLLINGSWORTH N, HOLT KB, KABIR S E, HOGARTH G. Synthesis, molecular structures and electrochemical investigations of [FeFe]-hydrogenase biomimics [Fe2(CO)6-n(EPh3)n (μ-edt)] (E=P, As, Sb; n=1, 2)[J]. Eur. J. Inorg. Chem., 2019(42): 4506-4515
FELTON G A N, GLASS R S, LICHTENBERGER D L, EVANS D H. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation[J]. Inorg. Chem., 2006, 45(23): 9181-9184
doi: 10.1021/ic060984e
ZHAO P H, HU M Y, LI J R, WANG Y Z, LU B P, HAN H F, LIU X F. Impacts of coordination modes (chelate versus bridge) of PNP- diphosphine ligands on the redox and electrocatalytic properties of diiron oxadithiolate complexes for proton reduction[J]. Electrochim. Acta, 2020, 353: 136615
doi: 10.1016/j.electacta.2020.136615
FOURMOND V, JACQUES P A, FONTECAVE M, ARTERO V. H2 evolution and molecular electrocatalysts: Determination of overpotentials and effect of homoconjugation[J]. Inorg. Chem., 2010, 49(22): 10338-10347
doi: 10.1021/ic101187v
FELTON G A N, MEBI C A, PETRO B J, VANNUCCI A K, EVANS D H, GLASS R S, LICHTENBERGER DL. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen[J]. J. Organomet. Chem., 2009, 694(17): 2681-2699
doi: 10.1016/j.jorganchem.2009.03.017
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Wanting CHEN , Chufei MIAO , Yan LIU , Bobi ZHENG , Xiaoyu ZHENG , Han XU , Jumei TIAN . Syntheses, characterization, and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1672-1680. doi: 10.11862/CJIC.20250013
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Guang Zeng , Yue Zeng , Huamin Hu , Yaqing Bai , Fangjie Nie , Junfei Duan , Zhaoyong Chen , Qi-Long Zhu . Regulating pore structure and pseudo-graphitic phase of hard carbon anode towards enhanced sodium storage performance. Chinese Chemical Letters, 2025, 36(7): 110122-. doi: 10.1016/j.cclet.2024.110122
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
All hydrogen atoms and solvents are omitted for clarity; Selected bond distances (nm) and angles (°) for 1 and 2: Fe1—Fe2 0.249 46(5) and 0.252 09(7), Fe2—P1 0.222 36(7) and 0.223 10(9), P1—Fe2—Fe1 156.19(2) and 155.25(3), C1—Fe1—Fe2 159.44(9) and 146.65(11).
Conditions: 1.0 mmol·L-1 complexes 1 and 2 were respectively contained in 0.1 mol·L-1 nBu4NPF6/MeCN at a scan rate of 0.1 V·s-1, and all potentials were versus the ferrocene/ferrocenium (Fc/Fc+) couple; Inset: plot of catalytic currents (icat) vs cHOAc (2-10 mmol·L-1).