

Citation: Yuying JIANG, Jia LUO, Zhan GAO. Development status and prospects of solid oxide cell high entropy electrode catalysts[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

固体氧化物电池高熵电极催化剂的发展现状及展望
English
Development status and prospects of solid oxide cell high entropy electrode catalysts
-
Key words:
- solid oxide cells
- / high entropy materials
- / electrode materials
-
0. 引言
为应对全球能源与环境危机, 构建清洁低碳能源体系成为战略重点。尽管可再生能源制氢技术等取得了突破, 但其规模化应用仍面临多重制约。因此, 发展低碳排放、燃料灵活的高效能源技术, 是加速构建高效绿色能源体系的关键。固体氧化物电池(SOCs)作为中高温(400~800 ℃)电化学能量转换装置, 具有高效率、强燃料适应性、低排放等优势[1]。典型的SOCs为三明治结构(图 1), 包括多孔氧化物基氧电极、传导氧离子(O2-)的致密氧化物基电解质和多孔金属-陶瓷复合燃料电极。在燃料电池(FC)模式中, 氧电极是发生氧还原反应(oxygen reduction reaction, ORR)的场所, 燃料电极是发生氢氧化反应(hydrogen oxidation reaction, HOR)的场所。在电解池(EC)模式中, 氧电极则是发生析氧反应(oxygen evolution reaction, OER)的场所, 燃料电极是发生析氢反应(hydrogen evolution reaction, HER)的场所。然而, SOCs系统在高温运行下仍面临电极/电解质热膨胀失配、界面稳定性差、材料活性不足等问题[2-5]。虽然目前已经开发了如界面工程[6-8]、元素掺杂[9-11]、纳米结构调控[12-13]、原位溶出[14-24]等优化策略, 但SOCs的商业化进程仍较为缓慢[25-26]。因此, 开发兼具高催化活性与稳定性的新型电极材料是突破SOCs技术瓶颈的关键。
图 1
近年来, 高熵材料(high-entropy materials, HEMs)在材料科学和能源领域引起了极大的兴趣[27]。其核心在于突破传统材料单一主元的限制, 采用5种及5种以上主元进行设计、制备(每种主元的原子百分比在5%~35%之间), 并通过最大化构型熵(ΔSconfig)来促进稳定单相结构的形成[28]。此外, 各主元在体系中具有等效作用, 不再区分主体与客体元素。高熵效应、晶格畸变效应、迟滞扩散效应和鸡尾酒效应被认为是HEMs的四大核心效应[29], 它们分别从热力学稳定性、微观结构、动力学行为及性能协同4个维度揭示了多主元固溶体的形成机制与功能特性根源, 共同构成了HEMs独特理化性质的物理基础, 并为多种能源相关应用提供了广阔的创新空间。随着HEMs在SOC电极中应用的不断拓展[30-33], 高熵策略被证明能够从结构稳定性、反应动力学与耐久性3个维度提升SOC电极性能[34-36]。本文系统综述了HEMs在SOC电极中的最新进展, 阐明了其核心效应与性能之间的构效关系, 并指出精准设计、长期稳定性等挑战, 旨在为研究人员提供有价值的指导。
1. HEMs的基本概念
HEMs最初的形态——高熵合金(high-entropy alloys, HEAs)的概念于2004年被首次提出[24]。从热力学角度来看, 熵是描述体系无序程度的基本状态函数。根据玻尔兹曼统计原理, 熵(S)的定义可表示为:
$ S=k_{\mathrm{B}} \ln \omega $ (1) 其中, kB为玻尔兹曼常数, ω表示该宏观状态对应的微观状态总数。一般而言, 固溶体中的混合熵通常由固溶体的ΔSconfig主导, 因此, 在多数研究中, 为避免复杂的计算与模拟, 常以ΔSconfig作为混合熵的近似表示。固溶体的ΔSconfig可以表示为固溶体中元素数量的函数:
$ \Delta S_{\mathrm{config}}=-R \sum\limits_{i=1}^N x_i \ln x_i $ (2) 其中, R是理想气体常数(8.314 J·mol-1K-1), N是固溶体结构中元素的数量, xi是元素i的物质的量分数。HEMs被定义为在化学计量状态下ΔSconfig大于1.5R的固溶体。在热力学中, 吉布斯自由能的变化可作为判断多主元体系相稳定性的核心判据, 其遵循吉布斯-亥姆霍兹方程:
$ \Delta G_{\operatorname{mix}}=\Delta H_{\operatorname{mix}}-T \Delta S_{\operatorname{mix}} $ (3) 其中, ΔGmix代表吉布斯自由能的变化, ΔHmix代表混合焓的变化, ΔSmix代表ΔSconfig的变化, T代表系统的热力学温度。这意味着, 当ΔSconfig的贡献足以抵消ΔHmix的贡献时, ΔGmix将呈现为负值, 从而驱动多主元体系形成稳定的晶体。在HEMs的设计理念中, ΔSconfig由组分个数及其物质的量分数共同决定;在等原子比近似下, ΔSconfig近似只与元素数目有关。因此, 在给定元素数目的条件下, 升高温度可进一步增加TΔSmix的贡献, 使本为负值的ΔGmix趋于更小, 从而提高材料的结构稳定性。只有当熵在热力学环境中占据主导作用时, 才会发生“熵稳定”现象, 进而调控材料的晶体结构与相行为[37]。随着对HEAs组成与结构理解的不断深入, 研究者开始将“高熵”设计理念推广至其他材料体系, 并相继发展出高熵氧化物(HEOs)、高熵碳化物(HECs)和高熵硫化物(HESs)等一系列新型材料分支。图 2展示了典型的HEAs和HECs的结构示意图[3]。
图 2
2. HEMs在SOC电极中的应用
SOCs的性能受其电极的催化活性与稳定性的影响。对SOCs来说, 燃料电极需兼具对燃料氧化的高电催化活性与对碳氢燃料重整的高催化效率, 以满足多种燃料条件下的稳定运行需求。其中Ni基金属陶瓷材料是目前应用最广泛的SOC燃料电极材料, 但Ni易促进C—H键断裂, 从而引发积碳, 导致电池性能衰减。另一方面, 氧电极上发生的ORR或OER的反应动力学过程由氧电极的电导率、催化活性和微观结构共同决定。虽然当前主流的Sr基氧电极通过将活性位点从三相界面拓展至全电极表面, 显著提高了SOCs的性能, 但是Sr元素在长期运行中的偏析现象会造成电极结构劣化, 限制了SOCs的长期寿命。因此, 开发新型SOC电极材料成为提升器件性能与寿命的关键。
HEMs通过其四大核心效应为SOC电极性能优化构建了多维度协同调控的新模式。高熵效应可通过协同固溶作用帮助SOC电极材料构建长程有序的晶体框架, 抑制杂相生成[38-40]。晶格畸变效应可以降低O2-迁移活化能, 并促进离子传输。迟滞扩散效应通过抑制SOC电极材料中阳离子向电解质的迁移, 维持电极-电解质界面的稳定。此外, 由多种过渡金属的协同配位产生的鸡尾酒效应通过电子轨道杂化和能带简并效应实现电子结构谐调, 构建多活性位点网络[41]。
2.1 高熵效应
高熵效应的热力学本质源于多主元混合策略引入高ΔSconfig以抵消ΔHmix的不利贡献, 驱动体系向吉布斯自由能最小方向演化, 如图 3A所示, 当ΔSconfig足以抵消ΔHmix的影响使得吉布斯自由能变为负值时, 元素组成复杂的体系趋向于稳定为高对称性的立方单相结构[42]。高熵效应主要通过影响晶体结构和能带结构来影响电荷传输, 均匀的单相结构可以最小化载流子散射, 同时晶体结构的长程有序性可以提高载流子迁移率。此外, 立方结构的三重对称性增强了能带简并度, 从而帮助提升材料的热力学稳定性。
图 3
图 3. (A) HEAs中的相形成示意图(左)和吉布斯自由能(右)[42]; (B) FCNCM电池在FC (上)和EC (下)模式下的电压-电流极化曲线[49]; (C) (La0.2Nd0.2Sm0.2Y0.2Gd0.2)MnO3和(La0.2Nd0.2Sm0.2Ca0.2Sr0.2)MnO3在1 200 ℃下退火后的SEM图像[50]; (D) LPNSGBF粉末的TEM照片和EDS元素映射图[51]Figure 3. (A) Schematic diagram of phase formation (left) and Gibbs free energy (right) in HEAs; (B) Voltage-current polarization curve of FCNCM battery in FC (top) and EC (down) modes; (C) SEM images of (La0.2Nd0.2Sm0.2Y0.2Gd0.2)MnO3 and (La0.2Nd0.2Sm0.2Ca0.2Sr0.2)MnO3 annealed at 1 200 ℃[50]; (D) TEM image and EDS elemental mappings of LPNSGBF powder[51]对于燃料电极而言, 高熵效应可以提供多元活性位点, 显示出超过二元合金的碳氢燃料重整催化活性[43-44]。Tucker等[45]使用浸渍法制备了Co/Fe/Cu/Mn/Ni-SDC燃料电极, 其在乙醇燃料中实现了长达500 h的稳定运行。另一方面, HEMs特有的固溶体结构可以稀释活性位点, 如通过Co、Zn掺杂降低HEMs中Ni位点的密度[46], 抑制碳氢化合物的过度裂解。此外, 高熵钙钛矿基体可以通过固溶作用在高温还原氛围中诱导过渡金属(如Ni、Co)的定向脱溶并限制其烧结, 形成稳定的脱溶金属/载体异质界面, 赋予材料可控的活性位点密度并抑制晶格塌陷[47-48]。Zhu等[49]设计了一种Fe0.1Co0.35Ni0.35Cu0.1Mo0.1/CGO(FCNCM)复合电极, 其在FC模式下实现了0.48 W·cm-2的峰值功率密度。此外, 如图 3B所示, 在1.5 V电解电压下, 共电解H2O/CO2时单电池的电流密度达0.878 A·cm-2, 理论计算证实高熵效应可以促进该材料表面电子的再分布, 进而降低CO2活化的能垒。对氧电极而言, 高熵效应可以有效地抑制氧电极的元素偏析问题并提升抗Cr中毒能力。Zhao等[50]设计并合成了一系列基于LaMnO3的A位多稀土共掺杂HEOs, 他们利用多元素(La/Pr/Nd/Sm/Gd)的高熵效应与钙钛矿晶格适配性的协同作用, 在维持单相结构的同时, 有效抑制了元素偏析, 并协同优化了电子与离子传导性能。在经过1 200 h的退火后, (La0.2Nd0.2Sm0.2Y0.2Gd0.2)MnO3和(La0.2Nd0.2Sm0.2 Ca0.2Sr0.2)MnO3中都未发现明显的Sr偏析(图 3C)。Lv等[51]利用A位高熵掺杂策略制备了基于无钴PrBaFe2O5+δ(PBF)材料的新型A位高熵氧电极La0.2Pr0.2Nd0.2Sm0.2Gd0.2BaFe2O5+δ(LPNSGBF)。如图 3D所示, SEM和EDS图像显示LPNSGBF上的元素分散均匀, 单电池的峰值功率密度在800 ℃达到1.02 W·cm-2。在含铬气氛中测试24 h后, LPNSGBF的极化阻抗(Rp)始终低于PBF, 且单电池性能退化率为每小时0.17%。
2.2 晶格畸变
HEMs的晶格畸变效应源于其多主元组分中不同原子尺寸和化学性质间的差异, 这种差异会导致局域原子排列扭曲并形成非均匀应力场, 从而阻碍位错运动并调制电子结构。在SOC电极中, 电子/离子电导率及氧空位浓度是影响反应效率的重要因素, 晶格畸变效应可以增强晶格氧的非简谐振动以降低O2-迁移势垒, 并通过散射O2-传输路径中的局域势阱提升离子电导率, 进而提升电化学反应动力学速率。同时, 畸变诱导的局部应力场可抑制高温下元素偏析和晶粒粗化, 增强电极的结构稳定性。
对于燃料电极来说, 晶格畸变使材料体相中的晶格氧更容易释放, 提升了燃料电极的抗结焦能力[52]。Zhang等[46]设计了一种高熵(NiCaMgZnCo)Al10Ox燃料电极, 该电极利用晶格畸变效应产生氧空位, 抑制焦炭沉积。此外, 多金属组分间的电子耦合作用能够调控表面电子密度分布, 抑制C—H键的过度断裂行为, 优化反应路径[53]。(NiCaMgZnCo)Al10Ox在650 ℃、CH4/CO2氛围中运行100 h的过程中未出现明显积碳。对于氧电极来说, 晶格畸变带来的氧空位对于ORR非常有利[54-55]。Hou等[56]报道了一种高熵(La1.2Sr0.8Mn0.2Fe0.2Co0.2Ni0.2Cu0.2O4+δ, LSMFCNC)氧电极。结果表明, 晶格畸变导致的晶格膨胀使金属—氧键更容易断裂, 从而生成了更多氧空位, 这加快了O2-和H+的运输。优异的氧吸附能力、电荷转移能力和氧离子扩散能力共同提升了LSMFCNC的ORR电催化活性, 如图 4a~4c所示。在700和600 ℃时, 其对应单电池的峰值功率密度分别为1.759和1.126 W·cm-2, 极化阻抗分别为0.059和0.179 Ω·cm2。Chen等[57]开发了Pr0.1875Ba0.1875Sr0.1875 La0.1875Ca0.25CoO3-δ(PBSLC25C)氧电极, 其对应单电池在750 ℃、含CO2的空气中分别表现出1.04和0.77 W·cm-2的峰值功率密度, 而且在100 h稳定性测试中未发生明显衰减(图 4d)。PBSLC25C的Op带中心(-3.26 eV)较传统材料更接近费米能级, 这增强了氧吸附位点的给电子能力。拉曼光谱中未检测到明显的SrCO3峰, 说明Sr偏析被有效抑制(图 4e)。Chen等[58]还报道了一种层状高熵Pr0.2Sm0.2Nd0.2Gd0.2 La0.2BaCo2O5+δ氧电极。结果表明, 由熵主导的稳定化效应和由镧系元素中不同尺寸的掺杂阳离子的无序分布引起的晶格畸变, 协同增强了氧吸附/离解的电催化活性, 并促进了稳定的晶体形态和相结构的形成, 对应单电池在800 ℃时可实现0.010 Ω·cm2的低面积比电阻(ASR)和2.030 W·cm-2的峰值功率密度, 并表现出显著增强的耐Cr性。
图 4
图 4. (a) LSMFCNC的HRTEM和SAED图; (b) LSMFCNC和(c) LSNO的晶格示意图[56]; (d) 具有PBSLC25C阴极的单电池的短期运行稳定性; (e) 在750 ℃下暴露于含有CO2的空气中50 h后, PBSLC25C (右)和PBSC (左)致密膜上SrCO3的拉曼光谱图, 以及PBSC (001)和PBSLC25C (001)上代表性的CO2吸附[57]Figure 4. (a) HRTEM and SAED images of LSMFCNC; Lattice diagrams of (b) LSMFCNC and (c) LSNO[56]; (d) Short-term operation stability of the battery with PBSLC25C cathode; (e) Raman spectra of SrCO3 on PBSLC25C (right) and PBSC (left) dense films after being exposed to air containing CO2 at 750 ℃ for 50 h, and representative CO2 adsorption on PBSC (001) and PBSLC25C (001)[57]2.3 迟滞扩散效应
迟滞扩散效应是由多主元固溶体中构型与局域化学环境共同作用而产生的原子扩散速率显著降低的现象。在HEMs中, 由于多种主要组分以近等物质的量之比混合, 原子之间的尺寸差异、键能差异以及电子结构差异将导致晶格结构中存在大量的局部应变和晶格扭曲[29, 30, 50], 且HEMs每个位点周围的原子具有不同的键构型, 这种化学无序性导致的局部晶格势能波动显著提高了原子迁移需跨越的势垒[59], 使得各元素在高温下的迁移速率远低于传统单一或主元较少的材料, 进一步提高了HEMs的相稳定性。HEMs的迟滞扩散效应可显著抑制电极/电解质界面微观结构的劣化。Babu等[60]报道了一种新型的尖晶石基(CuLiFeCoNi)1.4 Mn1.6O4-δHEOs(CM-HEO), 其晶粒尺寸为13 nm, 远小于未掺杂的母体尖晶石氧化物Cu1.4Mn1.6O4-δ(39 nm), 这表明迟滞扩散效应有效抑制了晶粒的生长。
Yang等[61]制备了Pr0.8Sr1.2(CuFe)0.4Mo0.2Mn0.2Nb0.2O4-δ(HE-PSCFMMN-CFA@FeO)SOC燃料电极。如图 5a所示, 材料在还原后发生体相相变, 即由双钙钛矿结构转变为层状结构。HRTEM进一步揭示还原处理后材料表面原位析出了具有CuFe@FeOx核壳结构的纳米颗粒(图 5b)。该析出结构不仅提供了丰富的金属/氧化物界面, 同时在FeOx壳层和主体晶格中引入了额外的氧空位, 从而增强了CO2的吸附、解离与还原反应动力学性能。其对应单电池在1.5 V下对CO2还原表现出1.95 A·cm-2的高电流密度, 同时在800 ℃、0.75 A·cm-2下, 在纯CO2中稳定运行长达200 h, 而对比组在65 h内便快速失活。如图 5c~5e所示, HE-PSCFMMN-CFA@FeO电极在CO2电解中具有卓越的活性与长期耐久性。对SOC氧电极而言, 迟滞扩散效应可以有效地抑制氧电极表面发生Sr/Ba的偏析[62], 从而进一步缓解Cr或CO2中毒。Zhao等[63]制备了La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-δ(HE-LSCF)氧电极。HE-LSCF的SrO偏析能为1.38 eV, 比传统的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)高出58.6%;同时, SrO的脱附能为-2.55 eV, 比LSCF低117.9%。Khan等[64]设计了La0.2Pr0.2Eu0.2Ce0.2Sr0.2FeO3-δ(HEP-LSF)氧电极, 该电极通过在Sr周围形成无序应力场, 抑制了Sr的偏析, 从而避免了绝缘相(如SrCO3和SrO)的形成。以HEP-LSF为氧电极的单电池在700 ℃下运行100 h未发生明显性能衰减。Wei等[65]开发了一种高熵SOC氧电极(La0.2Pr0.2Nd0.2Sm0.2Gd0.2)BaCo2O5+δ, 其对应单电池在-200 mA·cm-2的电流密度下测试20 h后, 极化电阻仅增加0.03 Ω·cm2。
图 5
图 5. (a) PSCFMMN还原前后晶体结构变化示意图; (b) HE-PSCFMMN-CFA@FeO的HRTEM图像; (c) 具有PSCFMMN和HE-PSCFMMN-CFA@FeO燃料电极的单电池在EC模式下的电压-电流极化曲线; (d) 短期CO2电解性能对比图; (e) 单电池在1.0~1.5 V的施加电压下在纯CO2中的相应法拉第效率; (f) 长期稳定性对比图[61]Figure 5. (a) Schematic diagram of crystal structure changes before and after reduction of PSCFMMN; (b) HRTEM image of HE-PSCFMMN-CFA@FeO; (c) Voltage-current polarization curve of single cell with PSCFMMN and HE-PSCFMMN-CFA@FeO fuel electrodes in EC mode; (d) Short-term CO2 electrolysis performance comparison chart; (e) Corresponding Faraday efficiency of a single cell in pure CO2 under an applied voltage of 1.0-1.5 V; (f) Comparison chart of long-term stability[61]2.4 鸡尾酒效应
HEMs中的鸡尾酒效应是一种独特的内在增强机制, 它源于多种主元在原子尺度上形成复杂的协同相互作用, 使得材料的整体性能显著超越各组分单独贡献的线性叠加, 赋予了高熵体系独特的催化、传导或结构稳定性等优势。在高熵SOC电极材料中, 鸡尾酒效应利用多元素在原子尺度间的协同作用实现了对电化学活性位点、氧空位形成能及离子传输动力学的综合调控, 产生了超越混合法则所预测的电化学性能[57, 62, 66-70]。虽然该现象在传统合金体系中已有初步体现, 但高熵体系中的鸡尾酒效应更强调与具有多种主元相关的性能改善, 包括不同元素原子间电子结构的相互影响以及多主元化学环境对微观结构的调控。
基于鸡尾酒效应, Singh等[44]开发了FeCoNiCuMn-GDC作为SOC燃料电极。结果表明, Fe和Mn的高氧亲和力可有效驱动表面碳氧化, Cu通过抑制C—C键断裂抑制碳沉积, Co则增强了水煤气变换反应活性, 形成了多路径协同抑制积碳的调控机制。如图 6a所示, Zheng等[34]制备了PrBa0.8Ca0.2Fe0.4Co0.4Ni0.4Cu0.4Zn0.4O6-δ(HE-PBC-FCNCZ) SOC氧电极, 该电极中B位元素呈现出混合价态(Fe3+/Fe2+、Co3+/Co2+、Ni2+、Cu2+、Zn2+), 形成了电子跳跃通道, 提升了电子电导率。同时, 由鸡尾酒效应诱导的协同催化机制极大地提升了电池性能, 不同元素通过以下分工实现协同催化:Fe/Ni促进氧吸附, Co/Cu加速电荷转移, Zn作为结构稳定剂维持晶格完整性, 多活性位点协同耦合显著降低氧还原/析出反应过电位。HE-PBC-FCNCZ氧电极的ASR随温度升高而显著降低, 与文献中报道的其他高熵空气电极相比, HE-PBC-FCNCZ在中温区具有更低的活化能, 表明其具备更好的电催化活性。且在700 ℃下, 随着氧分压从1.01×105 Pa降低至2.02×104 Pa, HE-PBC-FCNCZ氧电极的ASR增幅仅为0.02 Ω·cm2, 在100 h的长期测试下也表现出最小的ASR增长, 展现出良好的氧扩散与交换能力(图 6c~6f)。采用HE-PBC-FCNCZ作为氧电极的单电池在FC模式下的峰值功率密度为1.42 W·cm-2(700 ℃), EC模式下的电解电流密度为2.1 A·cm-2(1.3 V, 700 ℃)。如图 6g所示, 在FC模式下, 以HE-PBC-FCNCZ为氧电极的单电池在650 ℃、0.5 A·cm-2下稳定运行超过500 h, 表现出优异的运行稳定性。Cai等[71]通过在A位引入Pr、Nd、Sm、Ba、Sr五种阳离子, B位引入Co和Mn, 形成高熵(Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ(PNSBSMC)氧电极。结果表明, 多元素在氧电极表面协同作用, 形成了多种活性位点, 加速了O2吸附和解离;B位Co/Mn呈混合价态(Co3+/Co4+、Mn2+/Mn3+/Mn4+), 形成了电子跃迁网络, 提升了电子电导率, 降低了电荷转移阻抗。表 1总结了HEMs在SOC电极中的应用, 重点考察了其在中温下(700~800 ℃)的峰值功率密度及稳定性。
图 6
图 6. (a) HE-PBC-FCNCZ和PBCC的结构示意图; (b) HE-PBC-FCNCZ、ME-PBC-FCNCZ和PBCC在350~800 ℃空气中的电导率; (c~f) HE-PBC-FCNCZ的电化学性能; (g) 使用HE-PBC-FCNCZ作为电极材料的单电池稳定性[34]Figure 6. (a) Structural schematic diagram of HE-PBC-FCNCZ and PBCC; (b) Conductivity of HE-PBC-FCNCZ, ME-PBC-FCNCZ, and PBCC in air at 350-800 ℃; (c-f) Electrochemical properties of HE-PBC-FCNCZ; (g) Single cell stability using HE-PBC-FCNCZ as electrode material表 1
Material Single cell structure Peak power density/(W·cm-2) Test conditions Attenuation rate/(%·h-1) (Stability time) Ref. 700 ℃ 750 ℃ 800 ℃ GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ NiO-YSZ|YSZ|GDC|HE-GBO 0.41 0.63 0.97 Air, 700 ℃, 0.2 A·cm-2 0.6 (100 h) [72] La0.2Pr0.2Nd0.2Sm0.2Sr0.2MnO3-δ NiO-YSZ|YSZ|GDC|HE-LSM 0.36 0.55 0.80 Air, 700 ℃, 0.7 V 1.1 (100 h) [73] (Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ NiO-YSZ|YSZ|GDC|PNSBSMC 1.26 1.36 1.41 Air, 650 ℃, 0.4 A·cm-2 0.7 (180 h) [71] La0.2Pr0.2Nd0.2Sm0.2Gd0.2BaFe2O5+δ Ni-YSZ|YSZ|GDC|LPNSGBF 0.56 0.78 1.02 Wet Cr vapors, 800 ℃, 0.7 V 17 (100 h) [51] (La0.2Pr0.2Sm0.2Gd0.2Nd0.2)Ba0.5Sr0.5Co1.5Fe0.5O5 NiO-YSZ|YSZ|GDC|LPSGNBSCF-BaO 0.39 0.72 0.98 Air, 800 ℃, 0.2 A·cm-2 n.d. (100 h) [74] (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 NiO-YSZ|YSZ|GDC|FMCNZ 0.75 0.92 1.08 Air, 750 ℃, 0.5 V 18.5 (100 h) [75] La0.2Pr0.2Sm0.2Nd0.2Sr0.2FeO3-δ NiO-YSZ|YSZ|GDC|HE-LSF 0.57 0.81 1.03 Air, 700 ℃, 0.7 V 1.3 (100 h) [76] La0.5Ba0.5Fe0.2Co0.2Ni0.2Cu0.2Mn0.2O3-δ NiO-SDC|SDC|HE-LBF@BCO-GDC 0.29 0.51 0.79 Wet Cr vapors, 700 ℃, 0.2 A·cm-2 0.7 (24 h) [77] (La0.2Sr0.2Pr0.2Y0.2Ba0.2)Co0.2Fe0.8O3-δ NiO-YSZ|YSZ|GDC|LSPYB 0.54 1.00 n.d. Wet Cr vapors, 700 ℃, 0.2 A·cm-2 2.5×10-4(41 d) [78] n.d.: not described. 3. 结语
本综述系统阐述了HEMs所特有的四大核心效应(高熵效应、晶格畸变效应、迟滞扩散效应、鸡尾酒效应)在SOC电极应用中的关键作用机制。具体来说, 高熵效应通过多主元协同作用增强电极材料的热力学稳定性;晶格畸变诱导的局部应力场促进了离子传输动力学过程, 优化了电极反应活性;迟滞扩散效应延缓了界面元素互扩散, 增强了长期稳定性;而鸡尾酒效应则通过多元素电子结构协同, 突破了传统材料的催化活性极限。HEMs的多主元设计理念的核心价值在于能够打破传统材料设计中的“稳定性-活性-传导性”权衡限制, 通过多效应的耦合与协同作用, 从热力学和动力学层面协同解决SOC电极材料在实际运行中的界面反应动力学缓慢、热-机械失配以及化学降解问题, 为实现兼具高活性、高耐久性的SOCs器件提供了新的研究路径。尽管HEMs在SOC领域展现出较大的潜力, 但其深入发展和实用化仍面临诸多挑战, 未来研究应着重关注以下方向, 以实现从材料概念突破向器件性能飞跃的实质性转变:
(1) 需深化对HEMs电化学性能增强机制的本质认知。当前对于HEMs中多主元协同作用与电催化行为之间的内在联系仍缺乏系统性阐释, 亟需借助原位/准原位表征技术(如原位X射线光电子能谱、Raman、TEM等)结合第一性原理计算、分子动力学与多尺度反应动力学模拟, 揭示元素分布、电子结构调控与界面反应之间的协同机制, 从而为性能优化提供理论基础。
(2) 需构建高通量、精准化的HEMs设计策略。为突破传统材料设计中依赖试错与经验判断的局限, 亟需发展能够高效探索复杂主元的高通量材料设计与筛选方法。人工智能(AI), 包括机器学习(ML), 为加速HEMs的发现和优化提供了变革性潜力。通过建立基于实验数据与第一性原理计算的大数据集, AI模型可对HEMs的构型稳定性、电催化性能与运行可靠性进行多维度预测与优化。未来, 通过构建材料-结构-性能之间的映射关系, AI有望实现HEMs从结构组合到性能响应的快速设计, 推动高熵SOC电极实现从概念验证向实用开发的高效转化。
(3) 需实现面向实际SOCs应用工况的性能与经济性协同优化。尽管HEMs在实验室条件下展现出优异的催化性能与稳定性, 但仍需深入评估其能否满足实际SOC系统对能效、寿命、成本等多维度的综合要求。当前, 商用SOC对电极材料提出了苛刻的性能指标, 包括与电解质和其他构件的化学/热机械兼容性以及在高电流密度、高温-还原/氧化气氛中的长期稳定运行能力。与此同时, 当前HEMs的研究多聚焦于材料本征性能, 而对其制备成本、稀贵元素的依赖度、产业适配性等经济指标的系统评估仍属空白。因此, 未来应建立一套涵盖原材料成本、制备工艺能耗、运行寿命与全生命周期碳足迹的综合经济评价体系, 推动HEMs实现从性能创新走向产业落地的真正跨越。
-
-
[1]
GAO Z, MOGNI L V, MILLER E C, RAILSBACK J G, BARNETT S A. A perspective on low-temperature solid oxide fuel cells[J]. Energy Environ. Sci., 2016, 9: 1602-1644 doi: 10.1039/C5EE03858H
-
[2]
WANG J Y, GAO H, ZHAO K P, WULIJI H X, ZHAO B R, MA J, CHEN X G, ZHANG J W, SUI Y P, WEI T R, ZHU M, SHI X. Atomic to nanoscale chemical fluctuations: The catalyst for enhanced thermoelectric performance in high-entropy materials[J]. Sci. Adv., 2025, 11(9): eadt6298 doi: 10.1126/sciadv.adt6298
-
[3]
MA Y J, MA Y, WANG Q S, SCHWEIDLER S, BOTROS M, FU T T, HAHN H, BREZESINSKI T, BREITUNG B. High-entropy energy materials: Challenges and new opportunities[J]. Energy Environ. Sci., 2021, 14: 2883-2905 doi: 10.1039/D1EE00505G
-
[4]
GAO H T, ZHAO K P, WULIJI H, ZHU M, XU B B, LIN H, FEI L T, ZHANG H Y, ZHOU Z Y, LEI J D, CHEN H Y, WAN S, WEI T R, SHI X. Adaptable sublattice stabilized high-entropy materials with superior thermoelectric performance[J]. Energy Environ. Sci., 2023, 16: 6046-6057 doi: 10.1039/D3EE02788K
-
[5]
FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. Int. J. Hydrog. Energy, 2022, 47: 13771-13802 doi: 10.1016/j.ijhydene.2022.02.112
-
[6]
BAIUTTI F, CHIABRERA F, ANZENGRUBER M, KREKA K, SIRVENT J, YEDRA L, BUZI F, LIEDKE M O, CAVALLARO A, ZUAZO A C, ESTRADE S, BUTTERLING M, HIRSCHMANN E, WAGNER A, AGUADERO A, PEIRO F, TARANCON A. Leveraging grain boundary effects for nanostructured electrode layers in symmetric solid oxide fuel cells[J]. Adv. Mater. Interfaces, 2025, 12: 2400872 doi: 10.1002/admi.202400872
-
[7]
WANG S, JIANG W, ZHENG Y F, XIAO G P. Engineering a novel interface structure on La0.75Sr0.25Cr0.5Mn0.5O3-δ-Gd0.1Ce0.9O2-δ fuel electrode with excellent electrochemical performance and sulfur tolerance for electrocatalytic CO2 reduction[J]. J. Power Sources, 2025, 627: 235852 doi: 10.1016/j.jpowsour.2024.235852
-
[8]
SONG X, JIANG Y Y, DANG X Y, GAO Z. In situ exsolved mangosteen-type nanoalloy clusters and engineered heterogeneous interfaces for high-performance fuel-flexible solid oxide cells[J]. Small, 2025;21(14): 2412437 doi: 10.1002/smll.202412437
-
[9]
CHEN H J, GUO Z, ZHANG L A, LI Y F, LI F, ZHANG Y P, CHEN Y, WANG X W, YU B, SHI J M, LIU J, YANG C H, CHENG S, CHEN Y, LIU M L. Improving the electrocatalytic activity and durability of the La0. 6Sr0.4Co0.2Fe0.8O3-δ cathode by surface modification[J]. ACS Appl. Mater. Interfaces, 2018, 10: 39785-39793 doi: 10.1021/acsami.8b14693
-
[10]
ZHANG W J, GAO Y, ZHANG J K, ZHAO A, LIU F S, ZHENG K, JIN F J, LING Y H. Designing highly active and CO2 tolerant heterostructure electrode materials by a facile A-site deficiency strategy in Pr1-xBaCo2O5+δ double perovskite[J]. J. Power Sources, 2024, 602: 234344 doi: 10.1016/j.jpowsour.2024.234344
-
[11]
ZHANG S L, WANG H, LU M Y, ZHANG A P, MOGNI L V, LIU Q, LI C X, LI C J, BARNETT S A. Cobalt-substituted SrTi0.3Fe0.7O3-δ: A stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy Environ. Sci., 2018, 11: 1870-1879 doi: 10.1039/C8EE00449H
-
[12]
DOS SANTOS-GOMEZ L, ZAMUDIO-GARCIA J, PORRAS-VAZQUEZ J M, LOSILLA E R, MARRERO-LOPEZ D. Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis[J]. J. Power Sources, 2021, 507: 230277 doi: 10.1016/j.jpowsour.2021.230277
-
[13]
CHOI Y, CHO H J, KIM J, KANG J Y, SEO J, KIM J H, JEONG S J, LIM D K, KIM I D, JUNG W. Nanofiber composites as highly active and robust anodes for direct-hydrocarbon solid oxide fuel cells[J]. ACS Nano, 2022, 16: 14517-14526 doi: 10.1021/acsnano.2c04927
-
[14]
HE D B, GONG Y Z, NI J P, NI C S. A stable chromite anode for SOFC with Ce/Ni exsolution for simultaneous electricity generation and CH4 reforming[J]. Sep. Purif. Technol., 2023, 315: 123739 doi: 10.1016/j.seppur.2023.123739
-
[15]
ZHANG W, WEI J L, ZHOU Y X, MAO Y Z, ALONSO J A, LÓPEZ C A, FERNÁNDEZ-DIAZ M T, SONG Y P, MA X L, SUN C W. Co-Ru bimetallic nanoparticles/oxygen deficient perovskite oxides as a highly efficient anode catalyst layer for direct-methane solid oxide fuel cells[J]. Chem. Eng. J., 2024, 498: 155502 doi: 10.1016/j.cej.2024.155502
-
[16]
KOUSI K, TANG C Y, METCALFE I S, NEAGU D. Emergence and future of exsolved materials[J]. Small, 2021, 17(21): 2006479 doi: 10.1002/smll.202006479
-
[17]
KWON O, SENGODAN S, KIM K, KIM G, JEONG H Y, SHIN J, JU Y W, HAN J W, KIM G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nat. Commun., 2017, 8: 15967 doi: 10.1038/ncomms15967
-
[18]
LIU S X, WU D, KONG M H, WANG W, XIE L, HE J Q. High-entropy thermoelectric materials: Advances, challenges, and future opportunities[J]. ACS Energy Lett., 2025, 10: 925-934 doi: 10.1021/acsenergylett.4c03369
-
[19]
BAHOUT M M, PRAVEEN B, DORCET V, LA SALLE A L, PAOFAI S, HANSEN T C. In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen[J]. J. Mater. Chem. A, 2020, 8: 3590-3597 doi: 10.1039/C9TA10159D
-
[20]
WANG J K, FU L, YANG J M, LIU Z R, ZHOU J, MYUNG J H, WU K. In situ growth of Ru/RuO2 nanoparticle-modified (PrBa)0.95Mn1.9 Ru0.1O5+δ as a high-performance electrode for symmetrical solid oxide fuel cells[J]. Energy Fuels, 2022, 36: 12236-12244 doi: 10.1021/acs.energyfuels.2c02338
-
[21]
SUN Y F, ZHANG Y Q, HUA B, BEHNAMIAN Y, LI J, CUI S H, LI J H, LUO J L. Molybdenum doped Pr0.5Ba0.5MnO3-δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material[J]. J. Power Sources, 2016, 301: 237-241 doi: 10.1016/j.jpowsour.2015.09.127
-
[22]
SUN Y F, ZHANG Y Q, CHEN J, LI J H, ZHU Y T, ZENG Y, AMIRKHIZ B, LI S, HUA B, LUO J L. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett., 2016, 16: 5303-5309 doi: 10.1021/acs.nanolett.6b02757
-
[23]
ADIJANTO L, PADMANABHAN V B, KÜNGAS R, GORTE R J, VOHS J M. Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes[J]. J. Mater. Chem., 2012, 22: 11396-11402 doi: 10.1039/c2jm31774e
-
[24]
JIANG Y Y, LIU J M, CHENG B, DANG X Y, SU H Q, HUA Y N, GAO Z. In situ exsolved NiFe nanoparticles in Ni-doped Sr0.9Ti0.3 Fe0.63Ni0.07O3-δ anode with a three-dimensionally ordered macroporous structure for solid oxide fuel cells fueled by alkanes[J]. Chem. Eng. J., 2024, 491: 151865 doi: 10.1016/j.cej.2024.151865
-
[25]
ZHANG Y, CHEN B, GUAN D Q, XU M G, RAN R, NI M, ZHOU W, O′HAYRE R, SHAO Z P. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591: 246-251 doi: 10.1038/s41586-021-03264-1
-
[26]
YAO C G, XIA B X, ZHANG H X, WANG H C, ZHANG W W, GUO Q H, JIANG Y B, LANG X S, CAI K D. Fluoride-driven modulation of oxygen vacancies and surface stability in cobalt-based perovskite as a high-performance cathode for solid oxide fuel cells[J]. Chem. Eng. J., 2025, 505: 159359 doi: 10.1016/j.cej.2025.159359
-
[27]
TUN K S, GUPTA M. Microstructural evolution in MgAlLiZnCaY and MgAlLiZnCaCu multicomponent high entropy alloys[J]. Mater. Sci. Forum, 2018, 928: 183-187 doi: 10.4028/www.scientific.net/MSF.928.183
-
[28]
JHU P S, CHANG C W, CHENG C C, TING Y C, LIN T Y, YEN F Y, CHEN P W, LU S Y. Non-precious high entropy alloys and highly alkali-resistant composite membranes based high performance anion exchange membrane water electrolyzers[J]. Nano Energy, 2024, 126: 109703 doi: 10.1016/j.nanoen.2024.109703
-
[29]
HSU W L, TSAI C W, YEH A C, YEH J W. Clarifying the four core effects of high-entropy materials[J]. Nat. Rev. Chem., 2024, 8: 471-485 doi: 10.1038/s41570-024-00602-5
-
[30]
DABROWA J, OLSZEWSKA A, FALKENSTEIN A, SCHWAB C, SZYMCZAK M, ZAJUSZ M, MOZDZIERZ M, MIKULA A, ZIELINSKA K, BERENT K, CZEPPE T, MARTIN M, SWIERCZEK K. An innovative approach to design SOFC air electrode materials: High entropy La1-xSrx(Co, Cr, Fe, Mn, Ni)O3-δ (x=0, 0.1, 0.2, 0.3) perovskites synthesized by the sol-gel method[J]. J. Mater. Chem. A, 2020, 8: 24455-24468 doi: 10.1039/D0TA06356H
-
[31]
YANG Q, WANG G Q, WU H D, BESHIWORK B A, TIAN D, ZHU S Y, YANG Y, LU X Y, DING Y Z, LING Y H, CHEN Y H, LIN B. A high-entropy perovskite cathode for solid oxide fuel cells[J]. J. Alloy. Compd., 2021, 872: 159633 doi: 10.1016/j.jallcom.2021.159633
-
[32]
LIN Z, MA B, CHEN Z H, CHENG L, ZHOU Y K. Exploring B-site high-entropy configuration of spinel oxides for improved cathode performance in solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 2233-2241 doi: 10.1016/j.jeurceramsoc.2023.11.004
-
[33]
FU X M, LU S Q, MENG X W, SUN C X, WEI M B, JIANG H P, GONG W J. High-entropy cobalt-free perovskite as a high-performing nanofiber cathode for solid oxide fuel cells[J]. J. Mater. Chem. A, 2024, 12: 27452-27463 doi: 10.1039/D4TA01803F
-
[34]
XIA Z T, ZHANG Y X, XIONG X L, CUI J Z, LIU Z, XI S B, HU Z W, WANG J Q, ZHANG L J. Realizing B-site high-entropy air electrode for superior reversible solid oxide cells[J]. Appl. Catal. B‒ Environ. Energy, 2024, 357: 124314 doi: 10.1016/j.apcatb.2024.124314
-
[35]
LI X L, CHEN T, WANG C, SUN N, ZHANG G J, ZHOU Y C, WANG M, ZHU J, XU L, WANG S R. An active and stable high-entropy ruddlesden-popper type La1.4Sr0.6Co0.2Fe0.2Ni0.2Mn0.2Cu0.2O4±δ oxygen electrode for reversible solid oxide cells[J]. Adv. Funct. Mater., 2024, 34(52): 2411216 doi: 10.1002/adfm.202411216
-
[36]
ZHU F, DU Z W, XU K, HE F, XU Y S, LIAO Y H, CHEN Y. Entropy and composition regulations of air electrodes enable efficient oxygen reduction and evolution reactions for reversible solid oxide cells[J]. Adv. Energy Mater., 2024, 14(37): 2401048
-
[37]
LI T Y, YAO Y G, HUANG Z N, XIE P F, LIU Z Y, YANG M H, GAO J L, ZENG K Z, BROZENA A H, PASTEL G, JIAO M L, DONG Q, DAI J Q, LI S K, ZONG H, CHI M F, LUO J, MO Y F, WANG G F, WANG C, SHAHBAZIAN-YASSAR R, HU L B. Denary oxide nanoparticles as highly stable catalysts for methane combustion[J]. Nat. Catal., 2021, 4: 62-70 doi: 10.1038/s41929-020-00554-1
-
[38]
LI M, SUN C, NI Q, SUN Z, LIU Y, LI Y, LI L, JIN H B, ZHAO Y J. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode[J]. Adv. Energy Mater., 2023, 13(12): 2203971 doi: 10.1002/aenm.202203971
-
[39]
SU G S, WANG Y J, MU J W, REN Y F, YUE P, JI W X, LIANG L W, HOU L R, CHEN M, YUAN C Z. Insights into tiny high-entropy doping promising efficient sodium storage of Na3V2(PO4)2O2F toward sodium-ion batteries[J]. Adv. Energy Mater., 2024, 15(11): 2403282
-
[40]
LUO J, LI X, YE Y J, ZHOU T, WU W L, LI H L, YANG Q, YAN H, ZENG J. Progressive fabrication of a Pt-based high-entropy-alloy catalyst toward highly efficient propane dehydrogenation[J]. Angew. Chem. ‒Int. Edit., 2025, 64(7): e202419093 doi: 10.1002/anie.202419093
-
[41]
ZHANG D, WANG Y, PENG Y H, LUO Y, LIU T, HE W, CHEN F L, DING M Y. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction[J]. Adv. Powder Mater., 2023, 2(4): 100129 doi: 10.1016/j.apmate.2023.100129
-
[42]
LUAN H W, SHAO Y, LI J F, MAO W L, HAN Z D, SHAO C, YAO K F. Phase stabilities of high entropy alloys[J]. Scr. Mater., 2020, 179: 40-44 doi: 10.1016/j.scriptamat.2019.12.041
-
[43]
SHEN L Y, DU Z H, ZHANG Y, DONG X, ZHAO H L. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Appl. Catal. B‒ Environ. Energy, 2021, 295: 120264 doi: 10.1016/j.apcatb.2021.120264
-
[44]
LEE K X, HU B X, DUBEY P K, ANISUR M R, BELKO S, APHALE A N, SINGH P. High-entropy alloy anode for direct internal steam reforming of methane in SOFC[J]. Int. J. Hydrog. Energy, 2022, 47: 38372-38385 doi: 10.1016/j.ijhydene.2022.09.018
-
[45]
HU B X, LAU G, LEE K X, BELKO S, SINGH P, TUCKER M C. Ethanol-fueled metal supported solid oxide fuel cells with a high entropy alloy internal reforming catalyst[J]. J. Power Sources, 2023, 582: 233544 doi: 10.1016/j.jpowsour.2023.233544
-
[46]
ZHANG S S, GAO Y, NIU Q, ZHANG P F. Enhancing coke resistance of Ni-based spinel-type oxides by tuning the configurational entropy[J]. J. Catal., 2024, 440: 115819 doi: 10.1016/j.jcat.2024.115819
-
[47]
ZHU Y, ZHANG N, ZHANG W Y, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Probing metal/high-entropy perovskite heterointerfaces for efficient and sustainable CO2 electroreduction[J]. J. Mater. Chem. A, 2024, 12: 18182-18192 doi: 10.1039/D4TA02372B
-
[48]
WANG C, ZHU Y, LING Y H, GONG Y S, WANG R, WANG H W, JIN J, ZHAO L, HE B B. Atomistic insights into medium-entropy perovskites for efficient and robust CO2 electrolysis[J]. ACS Appl. Mater. Interfaces, 2023, 15: 45905-45914 doi: 10.1021/acsami.3c09913
-
[49]
TONG J, NI N, ZHOU B W, YANG C Q, REDDY K M, TU H Y, LIU Y S, TAN Z, XIANG L K, LI H Z, ZHOU X, ZHANG Y Y, LI Y X, ZHANG H C, ZHU L, HUANG Z. Toward high CO selectivity and oxidation resistance solid oxide electrolysis cell with high-entropy alloy[J]. ACS Catal., 2024, 14: 2897-2907 doi: 10.1021/acscatal.3c05972
-
[50]
SHI Y C, NI N, DING Q, ZHAO X F. Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes[J]. J. Mater. Chem. A, 2022, 10: 2256-2270 doi: 10.1039/D1TA07275G
-
[51]
HAN X, LING Y H, YANG Y, WU Y J, GAO Y, WEI B, LV Z. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells[J]. Adv. Funct. Mater., 2023, 33(43): 2304728 doi: 10.1002/adfm.202304728
-
[52]
LIAO Y Q, HE Y, CUI X M, LIU L P. Elemental Fe conditioning for the synthesis of highly selective and stable high entropy catalysts for CO2 methanation[J]. Fuel, 2024, 355: 129494 doi: 10.1016/j.fuel.2023.129494
-
[53]
ZHANG M Y, YE J, GAO Y, DUAN X L, ZHAO J H, ZHANG S S, LU X Y, LUO K L, WANG Q Q, NIU Q, ZHANG P F, DAI S. General synthesis of high-entropy oxide nanofibers[J]. ACS Nano, 2024, 18: 1449-1463 doi: 10.1021/acsnano.3c07506
-
[54]
XU Y S, XU X, BI L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells[J]. J. Adv. Ceram., 2022, 11: 794-804 doi: 10.1007/s40145-022-0573-7
-
[55]
DANG X Y, LI T H, JIANG Y Y, GAO Z, HUA Y N, SU H Q. High-performance Ti-doped strontium cobaltite perovskites as oxygen electrodes in solid oxide cells[J]. J. Power Sources, 2024, 603: 234448 doi: 10.1016/j.jpowsour.2024.234448
-
[56]
GONG J Y, HOU J. B-site high-entropy tailoring K2NiF4 oxide as an effective cathode for proton-conducting solid oxide fuel cells[J]. J. Mater. Sci. Technol., 2024, 186: 158-163 doi: 10.1016/j.jmst.2023.11.018
-
[57]
HE F, ZHU F, XU K, XU Y S, LIU D L, YANG G M, SASAKI K, CHOI Y M, CHEN Y. A highly oxygen reduction reaction active and CO2 durable high-entropy cathode for solid oxide fuel cells[J]. Appl. Catal. B‒Environ. Energy, 2024, 355: 124175 doi: 10.1016/j.apcatb.2024.124175
-
[58]
ZHU F, XU K, HE F, XU Y S, DU Z W, ZHANG H, ZENG D P, LIU Y, WANG H B, DING D, ZHOU Y C, CHEN Y. An active and contaminants-tolerant high-entropy electrode for ceramic fuel cells[J]. ACS Energy Lett., 2024, 9: 556-567 doi: 10.1021/acsenergylett.4c00037
-
[59]
ZOU J Y, TANG L, HE W E, ZHANG X H. High-entropy oxides: Pioneering the future of multifunctional materials[J]. ACS Nano, 2024, 18: 34492-34530 doi: 10.1021/acsnano.4c12538
-
[60]
PRABHAHARI V, PRAVEENA R, BABU K S. Novel spinel based high entropy oxide as electrode for symmetric SOFCs[J]. J. Alloy. Compd., 2024, 986: 174152 doi: 10.1016/j.jallcom.2024.174152
-
[61]
WANG Z M, TAN T, DU K, ZHANG Q M, LIU M L, YANG C H. A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanoparticles for efficient CO2 electrolysis[J]. Adv. Mater., 2024, 36(11): 2312119 doi: 10.1002/adma.202312119
-
[62]
LI Z P, GE Y F, XIAO Y H, DU M R, YANG F R, MA Y, LI Y, GAO D G, LI H B, WANG J H, WANG P. Fabrication and performance investigation of high entropy perovskite (Sr0.2Ba0.2Bi0.2 La0.2Pr0.2)FeO3 IT-SOFC cathode material[J]. J. Alloy. Compd., 2024, 989: 174357 doi: 10.1016/j.jallcom.2024.174357
-
[63]
ZHENG T, LI Z Y, WANG D G, PAN Z X, SUN H B, SONG T, ZHAO S K. Enhanced anti-chromium poisoning ability of high entropy La0.2Nd0.2Sm0.2Sr0.2Ba0.2Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells[J]. J. Alloy. Compd., 2024, 982: 173753 doi: 10.1016/j.jallcom.2024.173753
-
[64]
SALMAN M, SALEEM S, LING Y, KHAN M. Fe-based high-entropy perovskite oxide: A strategy to suppress Sr segregation and performance evaluation as an electrode material for SOFCs[J]. ACS Appl. Energy Mater., 2024, 7: 8648-8657 doi: 10.1021/acsaem.4c01614
-
[65]
YUAN M K, GAO Y, LIU L M, GAO J T, WANG Z, LI Y, HAO H R, HAO W T, LOU X T, LV Z, XU L L, WEI B. High entropy double perovskite cathodes with enhanced activity and operational stability for solid oxide fuel cells[J]. J. Eur. Ceram. Soc., 2024, 44: 3267-3276 doi: 10.1016/j.jeurceramsoc.2023.12.049
-
[66]
OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 2020, 5: 295-309 doi: 10.1038/s41578-019-0170-8
-
[67]
XIAO M, LIU Z Q, DI H S, BAI Y S, YANG G M, MEDVEDEV D A, LUO Z X, WANG W, ZHOU W, RAN R, SHAO Z P. High-entropy materials for solid oxide cells: Synthesis, applications, and prospects[J]. J. Energy Chem., 2025, 104: 268-296 doi: 10.1016/j.jechem.2024.12.009
-
[68]
DABROWA J, STEPIEN A, SZYMCZAK M, ZAJUSZ M, CZAJA P, SWIERCZEK K. High-entropy approach to double perovskite cathode materials for solid oxide fuel cells: Is multicomponent occupancy in (La, Pr, Nd, Sm, Gd)BaCo2O5+δ affecting physicochemical and electrocatalytic properties?[J]. Front. Energy Res., 2022, 10: 899308 doi: 10.3389/fenrg.2022.899308
-
[69]
HAN X, YANG Y, FAN Y, NI H, GUO Y M, CHEN Y, OU X M, LING Y H. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling[J]. Ceram. Int., 2021, 47: 17383-17390 doi: 10.1016/j.ceramint.2021.03.052
-
[70]
ZHANG Z P, WANG H, LI X J, XU H Y, QI M L. CO2/Cr-tolerance and oxygen reduction reaction of novel high-entropy perovskite cathode for intermediate temperature solid oxide fuel cell[J]. Ceram. Int., 2024, 50: 11360-11369 doi: 10.1016/j.ceramint.2024.01.036
-
[71]
YAO C G, LIU W N, ZHANG H X, WANG H C, ZHANG W W, LANG X S, CAI K D. High-entropy perovskite (Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ as a highly active and CO2 durable cathode for solid oxide fuel cells[J]. Appl. Catal. B‒ Environ. Energy, 2025, 363: 124789 doi: 10.1016/j.apcatb.2024.124789
-
[72]
GUO T M, DONG J B, CHEN Z P, RAO M M, LI M F, LI T, LING Y H. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC[J]. J. Inorg. Mater., 2023, 38: 693-700 doi: 10.15541/jim20220551
-
[73]
YANG Y, BAO H, NI H, OU X M, WANG S R, LIN B, FENG P Z, LING Y H. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode[J]. J. Power Sources, 2021, 482: 228959 doi: 10.1016/j.jpowsour.2020.228959
-
[74]
WANG X T, ZHONG J Y, LI Z G, XIANG J L, HOU B X, TAN Z X, LIU L S, WANG C C. Chromium tolerance of high entropy BaO impregnated-(La0.2Pr0.2Sm0.2Gd0.2Nd0.2)Ba0.5Sr0.5Co1.5Fe0.5O5 (LPSGNBSCF) cathodes for solid oxide fuel cell[J]. J. Solid State Electrochem., 2024, 29: 1787-1800
-
[75]
LIN Z, MA B, CHEN Z H, ZHOU Y K. Nanostructured spinel high-entropy oxide (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 as a potential cathode for solid oxide fuel cells[J]. Ceram. Int., 2023, 49: 23057-23067 doi: 10.1016/j.ceramint.2023.04.131
-
[76]
SALMAN M, SALEEM S, LING Y H, KHAN M, GAO Y. Improved electrochemical performance of high-entropy La0.8Sr0.2FeO3-based IT-SOFC cathode[J]. Ceram. Int., 2024, 50: 39475-39484 doi: 10.1016/j.ceramint.2024.07.324
-
[77]
LIU D F, CHEN Z P, ZHANG W J, SUN M Y, JIN F J, LIU H M, OU X M, ZHENG K, LING Y H. One-pot fabrication of high-entropy heterostructure cathode materials with excellent anti-poisoning properties in solid oxide fuel cells[J]. J. Power Sources, 2025, 626: 235809 doi: 10.1016/j.jpowsour.2024.235809
-
[78]
LI Z Q, GUAN B, XIA F, NIE J Y, LI W Y, MA L, LI W, ZHOU L F, WANG Y, TIAN H C, LUO J, CHEN Y, FROST M, AN K, LIU X B. High-entropy perovskite as a high-performing chromium-tolerant cathode for solid oxide fuel cells[J]. ACS Appl. Mater. Interfaces, 2022, 14: 24363-24373 doi: 10.1021/acsami.2c03657
-
[1]
-
图 3 (A) HEAs中的相形成示意图(左)和吉布斯自由能(右)[42]; (B) FCNCM电池在FC (上)和EC (下)模式下的电压-电流极化曲线[49]; (C) (La0.2Nd0.2Sm0.2Y0.2Gd0.2)MnO3和(La0.2Nd0.2Sm0.2Ca0.2Sr0.2)MnO3在1 200 ℃下退火后的SEM图像[50]; (D) LPNSGBF粉末的TEM照片和EDS元素映射图[51]
Figure 3 (A) Schematic diagram of phase formation (left) and Gibbs free energy (right) in HEAs; (B) Voltage-current polarization curve of FCNCM battery in FC (top) and EC (down) modes; (C) SEM images of (La0.2Nd0.2Sm0.2Y0.2Gd0.2)MnO3 and (La0.2Nd0.2Sm0.2Ca0.2Sr0.2)MnO3 annealed at 1 200 ℃[50]; (D) TEM image and EDS elemental mappings of LPNSGBF powder[51]
图 4 (a) LSMFCNC的HRTEM和SAED图; (b) LSMFCNC和(c) LSNO的晶格示意图[56]; (d) 具有PBSLC25C阴极的单电池的短期运行稳定性; (e) 在750 ℃下暴露于含有CO2的空气中50 h后, PBSLC25C (右)和PBSC (左)致密膜上SrCO3的拉曼光谱图, 以及PBSC (001)和PBSLC25C (001)上代表性的CO2吸附[57]
Figure 4 (a) HRTEM and SAED images of LSMFCNC; Lattice diagrams of (b) LSMFCNC and (c) LSNO[56]; (d) Short-term operation stability of the battery with PBSLC25C cathode; (e) Raman spectra of SrCO3 on PBSLC25C (right) and PBSC (left) dense films after being exposed to air containing CO2 at 750 ℃ for 50 h, and representative CO2 adsorption on PBSC (001) and PBSLC25C (001)[57]
图 5 (a) PSCFMMN还原前后晶体结构变化示意图; (b) HE-PSCFMMN-CFA@FeO的HRTEM图像; (c) 具有PSCFMMN和HE-PSCFMMN-CFA@FeO燃料电极的单电池在EC模式下的电压-电流极化曲线; (d) 短期CO2电解性能对比图; (e) 单电池在1.0~1.5 V的施加电压下在纯CO2中的相应法拉第效率; (f) 长期稳定性对比图[61]
Figure 5 (a) Schematic diagram of crystal structure changes before and after reduction of PSCFMMN; (b) HRTEM image of HE-PSCFMMN-CFA@FeO; (c) Voltage-current polarization curve of single cell with PSCFMMN and HE-PSCFMMN-CFA@FeO fuel electrodes in EC mode; (d) Short-term CO2 electrolysis performance comparison chart; (e) Corresponding Faraday efficiency of a single cell in pure CO2 under an applied voltage of 1.0-1.5 V; (f) Comparison chart of long-term stability[61]
图 6 (a) HE-PBC-FCNCZ和PBCC的结构示意图; (b) HE-PBC-FCNCZ、ME-PBC-FCNCZ和PBCC在350~800 ℃空气中的电导率; (c~f) HE-PBC-FCNCZ的电化学性能; (g) 使用HE-PBC-FCNCZ作为电极材料的单电池稳定性[34]
Figure 6 (a) Structural schematic diagram of HE-PBC-FCNCZ and PBCC; (b) Conductivity of HE-PBC-FCNCZ, ME-PBC-FCNCZ, and PBCC in air at 350-800 ℃; (c-f) Electrochemical properties of HE-PBC-FCNCZ; (g) Single cell stability using HE-PBC-FCNCZ as electrode material
表 1 HEMs在SOC电极中的应用
Table 1. Applications of HEMs in SOC electrodes
Material Single cell structure Peak power density/(W·cm-2) Test conditions Attenuation rate/(%·h-1) (Stability time) Ref. 700 ℃ 750 ℃ 800 ℃ GdBa(Fe0.2Mn0.2Co0.2Ni0.2Cu0.2)2O5+δ NiO-YSZ|YSZ|GDC|HE-GBO 0.41 0.63 0.97 Air, 700 ℃, 0.2 A·cm-2 0.6 (100 h) [72] La0.2Pr0.2Nd0.2Sm0.2Sr0.2MnO3-δ NiO-YSZ|YSZ|GDC|HE-LSM 0.36 0.55 0.80 Air, 700 ℃, 0.7 V 1.1 (100 h) [73] (Pr1/6Nd1/6Sm1/6Ba1/6Sr1/6)6/7(Mn1/6Co)6/7O3-δ NiO-YSZ|YSZ|GDC|PNSBSMC 1.26 1.36 1.41 Air, 650 ℃, 0.4 A·cm-2 0.7 (180 h) [71] La0.2Pr0.2Nd0.2Sm0.2Gd0.2BaFe2O5+δ Ni-YSZ|YSZ|GDC|LPNSGBF 0.56 0.78 1.02 Wet Cr vapors, 800 ℃, 0.7 V 17 (100 h) [51] (La0.2Pr0.2Sm0.2Gd0.2Nd0.2)Ba0.5Sr0.5Co1.5Fe0.5O5 NiO-YSZ|YSZ|GDC|LPSGNBSCF-BaO 0.39 0.72 0.98 Air, 800 ℃, 0.2 A·cm-2 n.d. (100 h) [74] (Fe0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 NiO-YSZ|YSZ|GDC|FMCNZ 0.75 0.92 1.08 Air, 750 ℃, 0.5 V 18.5 (100 h) [75] La0.2Pr0.2Sm0.2Nd0.2Sr0.2FeO3-δ NiO-YSZ|YSZ|GDC|HE-LSF 0.57 0.81 1.03 Air, 700 ℃, 0.7 V 1.3 (100 h) [76] La0.5Ba0.5Fe0.2Co0.2Ni0.2Cu0.2Mn0.2O3-δ NiO-SDC|SDC|HE-LBF@BCO-GDC 0.29 0.51 0.79 Wet Cr vapors, 700 ℃, 0.2 A·cm-2 0.7 (24 h) [77] (La0.2Sr0.2Pr0.2Y0.2Ba0.2)Co0.2Fe0.8O3-δ NiO-YSZ|YSZ|GDC|LSPYB 0.54 1.00 n.d. Wet Cr vapors, 700 ℃, 0.2 A·cm-2 2.5×10-4(41 d) [78] n.d.: not described. -

计量
- PDF下载量: 3
- 文章访问数: 207
- HTML全文浏览量: 34